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PREF AC(E

This annual report focuses on a single issue addressed under this contract
during 1988. It therefore represents an in-depth study of one of the research gYoals of
the research and development, rather than providing a broad, more shallow sampling of
the work performed.

This report vas also submitted as a Ph.D. dissertation to the Universit' of
Delaware Department of Computer and Information Sciences. It is also available from
the University as Technical Report 69-lI.i

I
I

I
I

I
N

I

I .,i



iv



Pritogmatic Kiowledge for Resolving Ill-Formedness

TABLE OF CONTENTS

CHAPT[R

i IN T R O D L C T I()N .....................................................................................

2 ILL-FO(RMEDNESS AND THE CASE FOR PRAG NIATICS .............

2.1 ill-Formedness, Redundancy, and Pragmatic Context .............. 3
2.2 The Importance of Pragmatc Context .......................... 5
2.3 Classes of Ill-Formedness in Terms of Available Constraints ........ 8
2.4 Alias Errors and M otivating Examples ............................................ . I1
2.5 R esearch G oals and Focus .............................................................. 14

3 EXISTIN(; APPROACHES FOR HANDLING !LL-FOIRMEDNESS [7

3.1 Syntactically D riven M ethods ......................................................... 17
3.2 Sem antically D riven M ethods ......................................................... t9

-4 OVERVIEW OF A PRA(;MATICS-BASED APPROACH .................. .23

I 4.1 Basic Approach: Linking to the Pragmatic Context ........................ 23
4.2 Comparing the Linking Approach to Alternative Approaches ........ 26
4.3 Selecting the Level for Linking ................................. 284.4 Wildcarding for Syntactic and Semantic Constraints ...................... 29
4.5 The Expert A dvising Setting ............................................................ 31

5 DOMAIN PLANTREES FOR M()DELING PRA(;MATIC
CONTEXT ............................................... 33

5.1 Role of the Domain Plan Tree in the Model ................................... 33
5.12 Existing A proaches to Plan-Based Models of Pragmatic Context 33
5.3 Theoretic a Description of Domain Plans ........................................ 36

5.3.1 A ctions and G round Plans ............. ........ .......................... ",6
5 .3 .2 P lan S che m ata ....................................................................... 37
5.3.3 Plan Schemata as Subactions in Larger Plans ....................... 38

5.4 Classifying Schemata for Modeling Plan-Building ......................... 39
5 .4 .1 P lan C lasses ........................................................................... 4 0
5.4 .2 Plan C lass T rees .................................................................... . 4 1

5.5 Plan Class Trees as a Plan-Building Model ................... 44

6 METAPLANS To M()DEL THE PROBLEM-SOL' ING
CONTEXT ............................................... 47

6.1 The Problem-Solving Context in the Expert Advising Setting ....... 47
6.2 Existing Models of the Problem-Solving Context ........................... 49

6.2.1 Working Directly from the Domain Plan Tree ...................... 49
6.2.2 Discourse Models for Problem-Solving Dialogue ................ 50

V



Vi9

6.2.3 Uses of Metaplans in Pragmatic Modei..... ......

6.3 Overview of a~etaplan Mlodel ........................................... 5

6. 3.1- The Metaplan Context Tree....................................5
6.3.2- Four Classes of Metaplans.......................................... 54

6.4 The Plan-Building Metaplans.......................................... 5

6.4. 1 M/etaplans that Outline the Domain Tree ........................ 5t

6.4.1.1 Bu ild-Plan .......................................... ....... .. 56
6.4.1.2 Build-Subplan...................................... .......... 5's
6.4.1.3 Build-Subaction .............................................. 58

6.4.2 Metaplans that Fill Variables ................................. S...... q

6.4.. 1 Instantiate-Var .................................. 5.............. -9
6.4.2.2 Constrain-Var Plans in General............................t01
6.4.2.3 Add- Boolean-Constrai'nt .................................. 0t3
6.4.2.4 Add-Scalar-Constrai'nt....................................... 3

6.5 Query Metaplans ............................................................ t4

6.5. 1 Plan Feasibility Queries............................................. 64

6.5.1.1 Ask-Pred-Value............................................ o
6.5.1.2 Check-Pred-Value............................................ 65

6.5.2 Slot Data Queries .................................................... 66

6.5.2.1 Ask-Existence ................................................ 66
6.5.2.2 Ask-Cardinality............................................... 67
6.5.23 Check-Cardinalit'v............................................ 68
6.5.2.4 Ask-Fillers .................................................... 68
6.5.2.5 Limi't-Cardinalitv............................................. 69
6.5.2.6 Sort-Set-by-Pred........_...................................... (
6.5.2.7 Ask-Attribute-Values ......................................... i7

6.6 Evaluative M etaplans............................ ........ 17

6.6.1 Evaluate-Plan, Evaluate-Subplan, and Evaluate -Subaction .. 73
6.6.2 Higher-Level Evaluative Nietaplans ...................... ....... 74

6.7 Inform ing M etaplans ......................... ..... ..... _ 75

6.7.1 Inform -G oal ....... ............... ...... ........ 7,S
6.7.2 Inform-Constraint ...................... .............................. N

6 8 The Combined Metaplan and Domain-Plan Model ................

7 [,1 NK IN;G T ( 1 R,.\( LM.\ITl( (C C0 NTE\T TOr ) RIE'S ()1,\ El
IL[-FORMEDNESS.............................................................83)

7.1 A Framework for Heuristics in the Metaplan Tree ................ .... 84
7 2 Probable Query Prediction: Heuristics from the Context Itself.... 85

7.2.1 Heuristic Use of Tree Shape and Prohlemr-Solving Patterns. 86

7.2.1 .1 Tree Distance as a Model of Coherence ............ 86



I vii

7.2.1.2 The Typical Problem-Solving Pattern ................... 88
7.2.1.3 Representing Alternate Problem-Solving Pitterns in

th e T re e ..................................................................... . . 9(

7.2.2 Predicting Plan Tree Growth from Agent's World
K n o w led g e ............................. ............................................... 9 3

72.2.1 Agent World Knowledge vs. Plan Knowledge ............ 94
7.2.2.2 Vorld Knowledge Relevant to the Planning Model.... 96
7.2.2.3 World Knowledge Not Requiring Deduction........... 97
7.2.2.4 World Knowledge Available in the Setting ........ 98
7.2.2.5 The Agent World Knowledge Model ............. ..... 98
7.2.. 6 Effects of Agent's World Knowledge on Subplan

G ro w th ................................ ....................................... 10 0
7.2.2.7 Effects of Agent'.- World Knowledge on Query

M e ta p lan s ........................................................... ....... 10 27.2.2.8 Effects of Agent's World Knowledge on Variable
Instantiation Metaplans .......................... 103

7.2.2.9 Using Agent World Knowledge Established During
Consultation ................................... 105

7.2.3 Predicting Domain Plan Choices Statistically .................... 107

7.3 Heuristic Control from the Query Parse .......... .............. 109
7.4 Linking to the Partial Interpretations of Ill-Formed Queries ........... ill

8 PRAGIMA IMPLEMENTATION DESCRIPTioN ............................... 115
8 .1 In tro d u ctio n ......................... ............................................................. 1 15

8.2 W ildcard P arsin g ............................................................................. . 115
8.3 Atomic Sentence Set Logical Representation .................................. 117
8.4 Plan and M etaplan Im plem entation ................................................. 120
8.5 Domain Plan LibraryDatabase, and Type System ......................... 123
8.6 B uilding the M etaplan T ree ............................................................. 124
8.7 Heuristic Component Im plem entation ............................................. 125
8 .8 T estin g fo r L ink s ............................................. ........................... ... 126 ,
8.9 Integration w ith the Janus N L System ............................................ 126

9 R ES L T S ....................................................... ........................................... 1 2 9

9.1 Introduction ............................................. 129
9.2 Presentation of Example Results ............................. 129

9.2.1 Damaged Vessel Domain Examples ..................................... 130

(.2.1.1 The Initial Context .............................. 130
9.2.1.2 Example DI: What is the VOCATION of Fox"........ 132
9.2.1.3 Example D2: What is the location of FIX? ........... 136
9.2.1.4 Example D3: Is Fox in the RED? ................. .138
0.2.1.5 Example D4: Doe,, Thorn have on board . SHARE

E R -2111 relay .............................................................. )1 o
9.2.1.6 Examnple D. How many BRUISERS areC1. .......... 141

9..2 SPA Domain Examples ............................... 143

9.2.2.1 Initial Context Description ........................ 143
9.2.2.2 Example SI: What is the HEADINESS of A,-sertie'.' 147
9.2.2.3 Exam le S2: What is the detection prohabilitv for

SPA ............ ......... ...... ........... . 14(

I



9.2.2.4 Example S3. What is the SAW readiness of
A s s u r .a n c e .' ...................................... . . .............. . ....... I

9.2.2.5 Example S4: Which TAGS are as.ignied to SPA 2' ... 151

9.3 Factors that Affect Example Difficulty ................ ...... .. 152

9.3.1 Inherent Ambiguitv of the Wildcard Word ................. 152
9.3.2 Degree of Contextual Constraint ................ 154
9.3.3 Logical Step Size .................................... ............... 155

9.4 A Theoretical Issue.- Modeling Alternate Perspectives 1................ 15o
9 .5 Sy stem D esign L essons .......................... . ..................... . ....... 15

9.5.1 Dependent Variable Instantiation from the Database ........... 158
I.5m2 Implication, for Heuristic Search Control ... 1.............0......... 100

9 6 S u m m ary ........................... 1..1.. .............. 1.1. .. ....... I h I

I ) ( '( )N 1"1.1 S IO N S .......... 1............. ..... .. .......... ... ... ....... .. ......... I1o 3

I0.1 Summan .. 1..
10.2 Implications of this Approach 14.......... ... . 104
10.3 Areas for Further W ork ... ..... 1 .............. .. 10

II l I ( ;R A P tl . ........ ................. .......... ..................... I



3 Report 'No. 7047 IIBN SN-stems and Trec.hnologies Corporation

L UT OF H t 'R ES

14.1: Choosingz a Level for M atching .. _.............. .......... 28
4.2: Interpretation with Single W ildcard . . .3(.......1......... .
4.3: Interpretation with Tw~o W ildcards 31 . ...... .. . ........I5. 1: Assertions Describe a Block,, World State 3..........6...........

Exam ple Prim itive A ction ...... ... ...... ..... ... ..... ......
Examnple Ground PlN.......................-7

4: Example Plan Schema.-,

;.: c em it M lipeArguments 38.... . . .. ... ......

;X Mal Cla s forSuppori-Bell .. ...... ............- 4

AW Plan Class Omi tting Inherited Preconditions .............. 4

Ex P an p l a il. of Sail....................................d.. 42
.13 Suclas Itrducng ubat olsand New Variable...............

6- 1: Ex mp eDialogue from Litman ............. I...............
6.2: Plan Class Header for Increase- Readiness ....................................
0.3: *Build-Plan* Node for [ncrease-Readtness ..........................
6.4: A Multiple-Assertion Constraint ............ ........... I,...- .... .....

6.: Ass.ertion Restricting Set to Five Closest Vessels ................. 64
7. I: Default- Downward-Suhplan H-Rule .................... ..... 86h
7 /.2: Default -Downwawrd-Suhaction H-Rule .................... ........ s
7.3: Evaluate-PlaLn-fromi-Build-Plain H-Rule .......... ......... .. (
7.4: Evaluate-Plan-Sibl ing H-Rule ............. .... 9.... ..... Q2a7.5: Eval-Plan-Altemate-Instantiation H-Rule .... 93...... . .. .
7.6: Block -Known- Failure H-Rule . .......................... 1()1
7.7: Block -Known- Failure -Instantilate -Var H-Rule . ....... .... IW (II7.8: Block -QUerv-of-Pred-Known-OK H-Rule ........... . 10(1
7.9: Reduce- Ask- Fil1lers-w ith- Large -Set H-Rule .............. .... 103
7.10: Boost-Constrain-V ar-with- Large -Set H-Rule .. ..... ... .. .i04
S . 1 : WMIL for List the readiness ,t th(' Fo t . .. I.. .. 17
8.2: WML for Vi hat is the read~jinss ('/ the h-,)t.. .. .. 118
8.3: Representation of List the C1 s hips In the pidwhn ( h at I --()I 8.4: Repr-esentation ofttWhich .%lshav iE .15ird ('a( p rt 1 20
's.;: The Resdiore-SIl-Readinesvs Plan Clas. 121
8.0: The Reiplace-Ship Plan Class......... . . . . .2U8.7: The ::Bui~d-Suhp~an* PS-Plan Clas ... .......... . . 122
'9.1: Input Form for W'hat ch Is. s Sterert . .............. ... ... .. 13(0
9.2: Partial Tree from Matching Witr l/ass is . trcter .... ..... 3 1
9.3: IlnpLt for Example DlI.. . ..... . 13..

9.4: Partial Tree for Example D I .. ........... 3......



XN

9.5: Three Links from Exam ple D I .. ............... ............................ .. 135

9.6: Full L ist of L inks f. r Exam ple 1 I ................................................ 135

,9 .7 : In p u t fo r E x am p le D 2 .................... ........................ ................... .. 13o
9.8 : Partial T ree for E xam ple D 2 ............................................................. 137
9 .9 : Inp u t fo r E x am p le D 3 .................................................................... ... 13.
9. 10: Input for Example D4 ........................................ tS3q
9. 11: Partial Tree for Example D4 ................................... 140.
9.12: M atching A ssertions for Exami ple D4 ................................................. 140
9.13: Input for Example D5 .................. ........ ......... 141
9.14: Partial Tree for Example D5 ........................ ......... 142
9.15 : C ontext Q uery in SPA D om ain ........................................................... I-;5
9.16: Partial T ree for SPA C ontext Q uery .... ....... ..................................... 14(-)
9 .1"7 : In p u t fo r E x am p le S I ............. ........................... ....... ..................... 14 7
9. 18: Partial Tree for Example S I with Cutoff 50 ....................................... 147
9. 19: A dditional Partial T ree for Exam r'le S I ............................................... 14S

9.20 : Input for Exam ple S 2 .......... ......................................... 149
9 .2 1 : In p u t fo r E x am p le S 3 ............................................................. .......... 15
9 .2 2 : In p u t fo r E x am p le S 4 ................. .... .... .................................. ...... . 1
9.23 : Parnial T ree fo , E .xam ple S4 ............................... i.............................. i
9.24: Summary Results with Wildcard Part of Speech .................................. 153



!
1 Reporl No. 7047 BBN Systemns and Technologies Corporation

I .\('AUKNO)\ [.FI)( ;XMINTS

I I an deeply grateful to Ralph Weischedel for his help, direction1, inspiration.
and support during the course ot this research. both at Delaware and more recently here
at Bolt Beranek and Newman. Through it all, he deftly balanced the roles of ad% isor.
nianager, colleanue. ad friend.

I l AOuMl ailso like to thank the other member,, of my _omnltttee, 111d
C, pecia-1l% Dan Chester. %0i.o rnore than filled in at Delaware after Railph' ,, depar-ture
vith technical advice and helpful organization. My indebtednes~s to Sandra C.arberr - i,

evident througlhout this dissertation.

INlv personal thanks, al,,o, to Gail Wine and Lyle Ramshaw for crucial
support of man different kinds. especially during these final months.

This work was supported in part by the National Science Foundation under
grants IST-83 11400 and IST-8419 162 and by the Defense Advanced Research Projects
Administration under Contract No. N00014-85-C-0016; their support is gratefully
acknowledged. The views and conclusions contained in this document. however, are
those of the author and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

i
1
I
I
I
I
I



II
3 Report No. 7047 BBN Systems and Technologies Corporation

!

ICHAPTER 1

5 INTRODUCTION

Many examples of ill-formedness that people routinely and easily correct can
be resolved by a natural language system only if it makes use of knowledge of the
pragmatic context. This investigation centers around examples of alias errors, where
the ill-formedness is due to a single word that is incorrect but still lexically understood,
as with the substitution of on for in in the phrase stay on good shape. Localizing and
resolving such errors frequently depends on pragmatic knowledge. This thesis presents
a model for pragmatic context within expert advising dialogues, where an agent who is
building a plan to solve a problem consults with a domain expert, and develops
methods for applying that model to resolving ill-formed input.

Metaplans are used to model the structure of the agent's problem-solving
behavior, both the gradual refinement of the domain plans being considered and the
connection between them and the queries motivated by them. The partially-specified

domain plans that the agent is considering are represented by nodes in a plan
classification hierarchy, and these classes of domain plans in turn serve as arguments to
the problem-solving metaplans. The expansion and search of the metaplan tree that
models the problem-solving context is governed by heuristics based both on its
metaplan structure and on a model of the agent's world knowledge. This model can be
used to track the problem-solving moves implicit in a sequence of well-formed queries
and also to predict likely moves and queries as determined by the context which can
then be linked to the partial interpretation of an ill-formed query suggesting corrections
for the ill-formedness.

The substance of this approach has been implemented in a system called
Pragma, although some elements of the metaplans and heuristics have been developed
further in the theoretical presentation that the implementation currently supports.
Pragma suggests corrections based on pragmatic context for alias errors in naval
domain queries, and it has been successfully demonstrated as an adjuct to the Janus
[57] natural language interface system. The techniques used could also be extended to

other classes of ill-formedness and to generating cooperative responses. The system
demonstrates that a model capturing the pragmatic structure of a particular discourse
setting can be used to increase the robustness of a natural language interface.

Chapter 2 begins by discussing the importance of pragmatic context in
resolving ill-formedness and characterizing the class of alias error examples. Chapter 3
considers existing approaches to ill-formedness, while Chapter 4 gives an overview of
the pragmatics-based approach taken here. The classification method for representing
partially-specified domain plans is presented in Chapter 5, while Chapter 6 covers the
metaplans used to model the plan-building context and Chapter 7 deals with the
heuristics used to direct exploration of the tree and to rank alternate possible solutions.
Chapter 8 then describes the Pragma implementation, Chapter 9 presents and analyzes

II

U ii mmInl



BBN Systems and Technologies Corporation Report No. 7047

the results of the test runs performed, and Chapter 10 summarizes and discusses areas
for further work.
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U CHAPTER 2

3 ILL-FORMEDNESS AND THE CASE FOR PRA(;MATICS

£ 2.1 I1-Formedness, Redundancy, and Pragmatic Context

Natural language [NL] often achieves its communicative purpose in spite of
significant amounts of ill-formedness. Even when a piece of text contains misspellings
or incorrect words or does not follow the rules of grammar, it is often possible for an
understanding system to interpret it correctly if the system can make effective use of
the various sorts of contextual knowledge that are available in the communicative
situation. This is possible because each item in an NL utterance exists in a web of
many layers of constraints, including the constraints that hearers depend on in
recognizing words from their constituent sounds, parsing the syntactic form of the
sentence, deriving a semantic interpretation, and fitting that interpretation into the
pragmatic context. That web of constraints is rich enough in meaning that many sorts
of ill-formedness can be automatically detected and corrected if the information in the
constraints can be effectively used. After discussing ill-formedness generally and
existing techniques for handling it, this thesis presents new mechanisms for making use
of pragmatic information in interpreting ill-formed input.

3 A practical motivation foi computer-based language processors to be able to
handle ill-formedness is that it occurs quite frequently in actual inputs to computer
systems. One study has shown that as much as 25% of the input to a computer system
can be ill-formed [16]. Systems that can make use of context to detect and correct for
such errors will be much more useful than systems that simply ignore or reject input
that is not exactly correct. Human communication using natural language, it often
turns out, is efficient not because ill-formedness does not occur but because the
contextual and other constraints are so often strong enough that the hearer can correct
automatically for the ill-formedness, without either being misled or requiring explicit
clarification dialogue. Indeed, any claim to be a "natural" language processor
requires some ability to handle ill-formed input intelligently.

Exactly what counts as well-formed or ill-formed depends in part on the
grammatical standards being used by the author and the interpreting system. Split
infinitives, for instance, are ill-formed in some grammars, but well-formed in others.
This lack of a universal standard makes it hard to give a formal definition of ill-
formedness, unless one invokes some implicit standard like the opinion of "the typical
listener" [56]. The exact boundaries of ill-formedness, however, are less important to
us here than techniques for dealing with it. We can be sure that any natural language
communication system will classify various kinds of input as ill-formed because the
robustness demands of the communication process require a grammar that includesenough redundancy to detect and correct a large fraction of the errors produced.

U3
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The ability to recognize, localize, and correct il-formedness is dependent on
the amount of redundancy that exists for each utterance in its context. A redundant
form of communication is more verbose than a minima-length encnding of the
information that needs to be transmitted, and ii is those extra bits that allow many
errors to be recognized and corrected. Such redundancy is found at every level in NL
communication. There is redundancy at the lexical level because the area of legal
words does not densely fill the space of possible letter combinations. Thus a
typographical error from an actual word is unlikely to be another legal word; it 6ften
instead is a meaningless letter sequence that triggers awareness of the error, and allows
searching for "nearby" sequences that are legal and appropriate in the context.

Grammatical rules like agreement rules often add a different kind of
redundancy to an utterance. There are some cases where the agreement information is
needed to resolve a grammatical ambiguity, for example,

Do you know the insurance payments on the car that were/was totalled
yesterday ?

But such examples are not typical, so that an agreement error is unlikely to produce a
legal sentence with an alternate interpretaticn; it usually produces an ill-formed
sentence which the reader can easily correct, since the grammatical roles are still clear:

My opinions, in spite of what you may say, is no business of yours.

Thus, the bits devoted to inflecting verbs to agree with their subjects are often
redundant, and contribute to robustness.

Even erroneous sentences that satisfy the grammatical rules may still be
recognized as anomalous if they contradict the semantic constraints that define which
syntactic combinations produce meaningful interpretations, as in examples like this,

The back windows of my idea are in remission.

The fact that some syntactically correct strings are still semantically ill-formed shows
that independent redundancy is introduced at the semantic level. Any sublanguage that
was fully non-redundant (like telephone numbers, that can be any seven-digit number)
would provide no internal opportunity at all for detecting such errors; the only way to
detect an incorrect value in that case is to have some external source of information and
redundancy.

In NL research, knowledge about the situational context of an utterance is
termed "pragmatic" knowledge, and it provides an additional layer of constraints on
well-formedness. There are examples in which pragmatics provides the only clue to
the ill-formedness. If a woman has two daughters, the younger of which lives in
Massachusetts and the older in California, and a guest asks

How is your younger daughter doing?

and the woman replies with

She has a new apartment in LA and is working in the movies.

the mistake about which daughter is meant makes the answer pragmatically ill-formed
in that it does not answer the guest's question, and the guest will probably try to correct
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the error. (Not all non sequiturs are ill-formed, of course. Speakers sometimes
deliberately flout the Griceian principle of relevance [21] on the topic level in order to
communicate at the discourse level, perhaps implying that they would like to change
the subject, but that explanation seems unlikely in this case.) There are also many
cases of ill-formedness in which non-pragmatic constraints are enough to identify and

localize the error, but pragmatic information is still essential to resolving it. If a

student asked

Is there room in CIM 360?

lexical knowledge is enough to say that CIM is not a legal word in this context, but not
enough to say whether COM (Communication) or CIS (Computer and Information
Sciences) was actually intended. However, the pragmatic context might well be able to
resolve this, for example if the student were known to be a CIS major who had just3 been asking about her major requirements.

At each level of human language processing, therefore, there are constraints
that introduce the redundancy that is needed to recognize and often resolve ill-
formedness. If NL systems are to achieve the same degree of robust understanding,
they also must learn to exploit this full web of constraints on every level. It is true that
while computer methods for NL understanding historically have considered only we11-
formed input, there has been a strong current of research lately on techniques to allow
parsers to diagnose and correct ill-formedness. However, the thrust of this thesis is to
argue that existing mechanisms for dealing with ill-formedness have not made
adequate use of pragmatic context, which, while hard to formulate, is actually the most
powerful source of constraints for identification and resolution of ill-formedness. Once
a dialogue context has been established, the set of utterances that would be coherent
responses in that given situation is far smaller than the set of all meaningful utterances,
and it is the power of the pragmatic constraints that achieve that reduction which must
be made available to the NL system. In this thesis, we suggest a way of encoding that
pragmatic context in the particular domain of expert advising systems, a method that
builds on research in plan recognition and plan modeling, and then a way of using that
pragmatic context model for the resolution of ill-formed input, including methods for3 combining that pragmatic knowledge with lexical, syntactic, and semantic constraints.

2.2 The Importance of Pragmatic Context

While each of the levels of processing generates its own set of constraints to
filter the set of well-formed utterances, there is a special character to the pragmatic
constraints, as will be pointed out in this section, that makes them particularly
important in the process of working out the meaning of an ill-formed input. While the
other levels of constraints can be relaxed, if necessary, in order to find an
interpretation, pragmatic constraints cannot be relaxed without giving up on the
listener's overall goal of assigning the utterance a role in the discourse context. This
special importance of pragmatic constraints supports our contention that a pragmatic
context model is a crucial resource in handling ill-formed input.

Since an utterance is recognized as ill-formed when it transgresses one of the
constraints imposed by the interpretation rules of the language, whether syntactic,
semantic, or pragmatic, one way to describe the effort to correct the ill-formedness is
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as a search for the most closely related utterance that does meet the constraints, where
the calculation of "closely related" includes whatever factors the system judges may
help to explain the occurrence of the ill-formedness. Such factors include euphony,
like the child complaining of having a night bear, close semantic relationship, like a
parent confusing two of her children and saying Mary for Joan, or confusing syntactic
structure, like subject verb agreement examples where the singularity of the subject is
masked by a plural appositive:

The new system, both the files from Penn and the interface utilities from
Delaware, were installed yesterday.

The most closely related well-formed sentence is taken to be the intended meaning. Of
course while the hearer usually proceeds on the assumption that the speaker is working
with full knowledge ot the language constraints, there are also cases like

They was sent ome.

where the reason for the ill-formedness may be a subdialect difference in the
constraints applied by the hearer and speaker. In special settings, also, completely non-
linguistic criteria can play a role; in interpreting typed text, for example, missing or
extra letters may be attributed to physical performance errors.

Many ill-formedness researchers have phrased this search in another way;
rather than speaking from the generation perspective of the factors that may have
produced the ill-formedness, they refer instead to searching within the system's
constraints for which language rles to relax so that the ill-formed sentence will be
well-formed in the larger grammar recognized by the relaxed rules. (See Section 3.1
for references.) The same kind of incremental search is implied, but here phrased in
terms of a sequence of rule relaxations to be explored, which is the analogue here to the
explanatory factors for ill-formedness in the previous view. Some researchers have
thus proposed a set of relaxed rules with attached scores, so that the search for a
corrected interpretation would proceed by testing relaxed rules in the order of
increasing seriousness until an interpretation was found.

While the relaxation perspective seems less intuitive, it has the advantage
that it does not need to hypothesize an explicit well-formed utterance from which the
ill-formed one can be derived. For example, when Weischedel and Sondheimer
[561 propose treating the utterance

My car drinks gasoline.

by relaxing the semantic constraints on subjects of drinking-events, ther can
understand the point of the phrase without modeling a specific alternate wording.

One crucial point is missed, however, in these formulations of the search for
corrections for ill-formedness, and that is the role of pragmatic context in the search. If
we think of a aearch for "closely related" utterances, the relationship that must be the
focus is not that between the ill-formed sentence and the hypothesized correct one, but

tWhle his example is not strictly ill-formed, many researchers propose handling such cases by the

same mechanisms as ill-formed ones.
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between the ill-formed sentence and the context into which the hearer must fit it in
order to understand it. For example, suppose a mail system user stated

Messages 5-9 are all about the reorganization.

I and then said

Forward those messages for Smith.

The query as it stands is semantically ill-formed, since there is no interpretation of for
Smith modifying the forward command, and if messages for Smith is taken together,
the command then lacks the required destination specification. We can easily see two
related queries, however, that would be well-formed in the correct contexts, one where
for is replaced by from, if there were a set of messages from Smith and a default
destination implied by the context, and another where for is taken as to, so that Smith
becomes the destination for those messages. Even though the metric for likely errors
may predict that for and from are more closely related because of euphony than for and
to, the pragmatic context in this case means that only the latter interpretation can be
made to fit. Thus, the search for a related interpretation does not begin with the ill-
formed sentence, but with the pragmatic context, which defines the set of utterances
that can be coherent additions to that known setting.

Alternatively, when the search for a resolution to the ill-formedness is
conceived as a search for a linguistic constraint to relax in order to understand the
input, we find that pragmatic constraints play the same special role. Because pragmatic
constraints deal with the role the utterance as a whole will play in the discourse, they
cannot be relaxed in the same way as a lexical, syntactic, or semantic constraint
without making it impossible to discern the intent of the utterance. Even if an
utterance is otherwise completely well-formed, if the pragmatics is off, the hearer must
struggle to find another interpretation that does fit, and that continues to be true even if
other constraints must be stretched to make the alternate interpretation possible. For
example, suppose a student who had just asked

Is there space in CIS 630?

Iand had been told that there was not then proceeded to ask:

What about CIS 160?

We would expect the adviser to protest the pragmatic incongruity of that follow-on
query, perhaps by asking

SDo you mean 610?

The pragmatic context from the first query sets up strong expectations about the sort of
goal the speaker is pursuing and about the speaker's status as a graduate student, and
the second query, although in itself perfectly well-formed, clashes so severely with
those expectations that the hearer is forced to hypothesize some unnoticed ill-
formedness or en,;- in interpretation rather than settle for the lack of pragmatic
coherence that the obvious interpretation entails. On the other hand, if an utterance can
be made to match the pragmatic context, even gross violations of other constraints can
be easily repaired or overlooked. Thus if the same student had followed that first query
with one of the following:
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What on 640?
Is space there 640?
Spaces 640?

we would expect the hearer to be able to resolve the ill-formedness and respond
directly.

Of course, the pragmatic context does not always produce as powerful a set
of expectations as in this example. In some contexts, the variety of follow-on
utterances that would be pragmatically well-formed is much greater. An unsignalled
shift in the speaker's goals may be the reason behind apparent incoherence, for
example, if the student's second query was on behalf of a friend. There are also cases
where a reinterpretation of the pragmatic context establishes a coherence that seemed
to be lacking; the given example might become coherent if the student turned out to be
writing a story about overcrowded classrooms. Still, while the pragmatic context may
need to be revised, it cannot be relaxed, in the sense that a syntactic rule can be
relaxed.

It is in this sense that the pragmatic context forms a boundary condition for
the interpretation problem, a given that must be dealt with as it stands, since to
understand the utterance means exactly to connect it in a coherent way with its
pragmatic context. While other constraints can be stretched in the search for an
interpretation, giving up on the constraints of pragmatic context would mean
abandoning the goal of coherence itself. Thus we can expect that a model of pragmatic
context will provide a powerful source of constraints to direct the sear,.h for corrections
for ill-formedness.

The use of pragmatic constraints for this purpose has been limited
historically by the greater difficulty in formulating adequate models of pragmatic
context. NL research has usually focused first on isolated sentences, at which level
only lexical, syntactic, and semantic constraints can be applied, since the pragmatic
context is unspecified. However, recent work in plan recognition, as pointed out in
Section 5.2, has made available a technique for pragmatic modeling that allows us to
begin to explore the application of pragmatic constraints in a setting that badly needs
them.

2.3 Classes of ll-Formedness in Terms of Available Constraints

In this section, we consider ways of classifying examples of ill-formedness
with a view to selecting a useful class of examples for our exploration of the utility of
pragmatic context. In this survey of types of ill-formedness, we examined corpora of
naturally-occurring dialogue from various contexts including a computer interface in a
ship loading task, students consulting an academic adviser, and a radio talk show for
financial advice. Many ill-formed examples were identified, for which various
classification schemes are possible. The most useful classification seems to be one
based on the levels of constraints that are sensitive to that particular kind of ill-
formedness.

Classifying examples of ill-formedness is an interesting problem in itself, and
NL researchers working with ill-formedness have used various approaches. The most
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common approach is to classify them based on either the grammatical constraint being
violated or on the assumed etiology of the error, resulting in categories like agreement
errors or spelling errors. Such classifications are at best approximate, since many
errors fit more than one classification. For instance, any agreement error could also be
seen as a spelling error or incorrect word example. This kind of classification requires
both a judgment about what utterance was actually intended and also a heuristic choice
about how to categorize the difference between the actual and intended utterances.
(Naturally, there will be some ill-formed examples that are so garbled that the hearer is
unable to make any connection between them and the context or any guess as to the
speaker's actual intent, and such examples will simply need to be lumped together at
the bottom of the ratings.) We suggest instead a classification based on the levels of
constraints applied by the NL system in interpreting the utterance and the results of the
ill-formedness on those different levels of constraints.

3 We can approach this constraint-based classification by first considering
well-formed utterances, and noting that the purpose of the constraints in an NL system
is to map out the legal derivations from intended meanings to realized utterances. The
understanding system applies those constraints in reverse to the utterance to deduce
from it the possible original meanings. An unambiguous utterance is one where, at
least in context, this interpretation process produces a single meaning that is thus
est±!ished as the intent behind the utterance. In the great majority of discourse
contexts, such an unambiguous utterance is the natural strategy for a speaker to adopt
to communicate her message. If we assume that the speaker's and hearer's context and
language models agree, such an utterance will be decoded in a way that conveys its
intended message.

An ambiguous utterance that allows for more than one interpretation in
context presents the danger that the meaning discerned by the hearer may not be the
one intended by the speaker. Such ambiguity may be unintentional, where the speaker
is not aware of the alternate interpretation, in which case miscommunication may well
result, and the utterance is, in a sense, ill-formed for its communicative purpose. This
is different, of course, from cases where intentional ambiguity is used to serve a
particular purpose in the discourse, as is true of puns where the hearer is expected to
recognize and enjoy the ambiguity, or of cases where ambiguity is used to avoid
communicating more than necessary.

3 One broad definition of ill-formedness would include all utterances that do
not achieve the communicative purpose of their speaker, making this effectively
equivalent to miscommunication. That would include cases where the communication
failure was due to differences in context as perceived by speaker and hearer. A
problem with that definition, of course, is that the hearer may have no way even in
principle of detecting that sort of ill-formedness. Another problem is that this
definition rules out examples like minor misspellings in written text that do contradict a
linguistic constraint but in such a way that the communicative purpose of the utterance
is not threatened.

3 When we speak of ill-formedness, we are instead focusing on discernible
cases of miscommunication, examples that will be recognizable to the hearer as ill-
formed, while miscommunications that result in a single incorrect interpretation on the
part of the hearer will not in general be recognizable as ill-formed, an example, again,
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being a mistake in reporting a telephone number. Of course, the most frequent way hi
which miscommunication becomes obvious to the hearer is through the failure of the
utterance to result in even a single interpretation through failing to meet some
constraint of the language. There are also rarer examples where the existence of
multiple interpretations reveals the presence of ill-formedness, as in the following
example, where him was a typo for the intended Jim:

Speaker 1: 1 could take Mary, Mark, or Jim.
Speaker 2: Take him.

In this case the ill-formedness is due to the failure of the pronoun reference to be
restricted enough to select a single referent. Thus ill-formedness, whether it results in
zero or multiple interpretations, is detectable miscommunication revealed to the hearer
by the violation of some linguistic constraint.

Naturally, this definition does make ill-formedness dependent on the hearer's
model of those linguistic constraints and of the context. If that model is off, there will
be examples where the hearer will detect apparent constraint failures in utterances that
are actually well-formed, or not detect them in ill-formed examples. An example of
the former would be when the hearer does not know a figure of speech like kick the
bucket, and so fails to find an interpretation for a sentence containing it; the latter can
be seen in the utterance

Leslie left her books at home today.

when the hearer is not aware that the Leslie in question is male. This sort of
misdiagnosis is, of course, more of a problem with NL systems at this point than with
human hearers, since current systems often contain significant omissions and flaws in
their representations of linguistic and pragmatic constraints.

Given this definition, it seems that the most useful classification for types of
ill-formedness is to group them according to the class of constraints that are violated.
whether those constraints are lexical, syntactic. semantic, or pragmatic. Misspelled
words would be examples of lexical ill-formedness. Syntactic ill-formedness includes
specifically syntactic tests like agreement failures along with cases where an incorrect
or missing word leaves a sentence with no successful syntactic interpretation.
Semantic ill-formedness arises, for example, from incorrect words or prepositions,
where there may be a successful syntactic interpretation, but one that does not have any
corresponding semantic reading. Pragmatic ill-formedness, in turn, covers cases where
there is even a valid semantic reading, but that reading cannot be fit into the current
pragmatic context.

The advantage of this classification scheme is that it characterizes the ill-
formedness in terms of the type of knowledge needed to at least localize the error, so
that an example of syntactic ill-formedness can be localized on the basis of syntactic
constraints. That is different, of course, than saying that the same kind of constraints
will be sufficient to resolve the error. Quite the contrary, it is very often true that even
a lexically localizable error may require pragmatic information to resolve, if the hearer
in fact can resolve it at all. The level of knowledge required to resolve the error is
usually much greater and also much more dependent on the circumstances in which it
occurs than that required to identify it, and thus more difficult to use in a classification
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scheme. Also, while this classification is based on different levels of congtraints, that
does not imply any commitment to a sequential processing model that begins with
lexical processing and works up. Indeed, although processing order is not the point
here, the usefulness of pragmatic constraints established in this work might well argue5 for bringing them to bear before the final stages of processing.

2.4 Alias Errors and Motivating Examples

The choice of examples can have an important bearing on an investigation of
this sort, since they will determine to some extent the kinds of mechanisms that will be
appropriate. In order to explore the use of pragmatic knowledge in resolving ill-
formedness, we are interested in a class of examples

. that frequently can be resolved only by resorting to pragmatic infornation,
and

. that are not hard to generate.

The primary criterion in choosing a class of examples is to select one for
which syntactic and semantic techniques alone are usually not adequate. Since our
hypothesis is that pragmatic constraints are the most useful ones in resolving ill-
formedness, it provides a stronger test if the examples on which our techniques are
tested are ones that are too hard for methods that do not use pragmatic knowledge. If
we can show that pragmatics allows us to resolve even that sort of difficult class, it will
then be easy to see how the addition of pragmatic guidance to techniques already
demonstrated for classes of ill-formedness that are easier to resolve will also be able to3 improve their performance.

An additional practical restriction is that examples of the given class not be
too hard to generate. This comes simply from the need to be able to generate examples
within the domain for which a plan library and database of facts are available to
support the pragmatic modeling. While it would be preferable to work solely from
examples gleaned from naturally occurring dialogue, it is not feasible to collect
sufficient examples in a single constrained domain. The search for an example set of
reasonable size requires resorting to manufactured examples, and thus argues for a

class of examples that can be generated fairly easily.

The class of examples that we propose to work with are single-word alias
errors. By alias errors, we mean examples of semantic or pragmatic ill-formedness
whose etiological explanation involves an error on the lexical or syntactic level. For
example, an error like a typographical transposition normally produces an ill-
formedness identifiable by lexical constraints, since the letter combination produced is
not a legal word. On occasion, however, the new sequence turns out by chance to be
another word, in that sense an alias, which satisfies lexical and perhaps also syntactic
constraints, so that the ill-formnedness is not identified until it causes a semantic or
pragmatic failure. Such errors thus happen to evade at least some levels of the
redundancy that usually catches random permutations of a piece of natural language
text. A popular type of alias error is spelling mistakes that happen to be also legal
words. If in is misspelled as jn, that can be caught by a lexical processor, but if it is
misspelled as on, as in the statement
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You need exercise to stay on good shape.

a higher-level constraint is needed to catch the error, if, indeed, it can be caught at all.
Another example would be syntactic alias errors when a grammatical error produces a
sentence with a partially-successful alternate reading, as in the follow,,,ing example (ill-
formed unless the speaker is a senator):

I lied down on the floor.

Alias errors are interesting and particularly difficult to resolve both because
they frequently have multiple possible corrections and because the locus of the error
itself is obscure. As an example of the former, the exercise example above could be
corrected either to

You need exercise to staY in good shape.

or to

You need exercise to stay on good terms.

For the latter, consider the following naval domain query:

Will the detection of the Swordfish be followed by the other subs?

It does not make sense in this domain for vessels to follow events, but it is not clear
where in the query the problem lies. Considering only single-word errors, the speaker
might be wondering about the direction of the Swordfish in comparison to the course of
the other subs, or if its detection would be noticed by the other subs, or if its detection
would be followed by the other tasks. Some other classes of ill-formedness like
agreement errors share the former property of having multiple possible corrections, so
that

Is the subs in port?

could be corrected either to is the sub or are the subs, but alias errors are unique in
terms of this difficulty in localizing the problem. The fact that the error results in an
alias for a form that is at least partially coherent can mislead the hearer as to its actual
source.

This combination of difficulties has made alias errors particularly difficult to
handle. For example, to handle the misspelling of on for in by a direct extension of the
usual approach to spelling errors would require treating each word in the sentence as
perhaps misspelled. This is. in fact, the approach taken by Trawick [531, who defines a
fixed "neighborhood" distance between two words in terms of the number of letters
changed, and then tries to parse the sentence with each possible substitution for each
word. The combinatorics of this method make it impractical for general use. As
Granger [191 correctly argues, semantics and pragmatics usually provide a stronger
constraint on the possible fillers than lexical closeness, so that it is more efficient for
the recovery strategy to make use first of those contextual constraints, rather than to
proceed by blindly searching the dictionary for respellings of each word. It is exactly
the difficult cases like alias errors that make clear the importance of bringing pragmatic
knowledge to bear.

Note that our definition of alias errors rules out the related but even more
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problematic class of examples where the low-level erro r creates an alias that
successfully evades not only lexical and syntactic but also semantic and pragmatic
constraints. An undetectable error is, in a sense, a perfect alias, because the hearer,
even applying context, has no way of discovering it. Such errors may be caught only
much later, when the world model built up from them proves to conflict somehow with
the real world, or they may function as disinformatiin that is never caught. Clearly, we
are only interested in examples that can be identified as ill-formed given the relevantU context.

Witbin the class of detectable alias errors, we can also distinguish those that
are correctable either with or without using pragmatic information. Roughly ranked
from easy to hard, we thus have the following classes:

1. Detectable and correctable without using pragmatics:
MY neighbor's tabby cot is good with children.

2. Detectable without using pragmatics, correctable with pragmatics:
I'm a computer major. Is there room in CIV 360?
(Where there is no Civil Engineering course numbered 360.)

3. Detectable without using pragmatics, but not correctable at all:
Mv friend wants a new caw for Christmas.
(Car, cat, or cap would all fit.)

4. Detectable and correctable using pragmatics:
It's cold up there. You'll need to get a heavier goat.

5. Detectable using pragmatics, but not correctable at all:
The two ships were 50,O00 miles apart.
(Could be 50, or feet, yards, or meters.)

6. Not detectable even using pragmatics:
They're excellent fish. I caught them in Portsmouth.
(Where bought was intended.)

Here we are primarily concerned with the classes 2 and 4, those that can be
corrected using pragmatics, whether or not the presence of the error can be recognized
without pragmatics. Class I examples, while still alias errors, are amenable to purely
semantic methods, and classes 3, 5, and 6 are examples where either the pragmatic
context is insufficiently constrained or the alias is sufficiently devious that no
correction at all is possible.

SWithin the larger class of alias errors, we will focus on those that are caused
by a single-word lexical error. That sort of error is easier to gene. ite, and still
demonstrates all the important features of the class, including arbitrarily complex
ambiguities of sentence interpetation. There are more complex errors that can still be
corrected, given a strong enough pragmatic context, but we believe that single-word
errors cover a usefully large portion of the landscape. Certainly, any scheme powerful
enough to handle single-word alias errors could also handle non-alias misspellings and
many other classes of ill-formedness like agreement failures, although weaker, faster,
more specific methods can also handle some of them. Thus it seems that the
mechanisms for modeling and applying pragmatic context that are worked out for
single-word errors will also generalize to broader classes of ill-formedness.
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One possibly misleading feature of these single-word alias errors is that our
generated examples, in order to suggest how they might have arisen, are usually close
typographical neighbors of the suggested intended forms. Our approach to correcting
the errors, however, as will be seen, ignores that lexical similarity, so that the word
vocation might find the three suggested corrections speed, class, and location, wit.._t
any preference yet assigned to the latter because of its lexical similarity. It might seem
foolish to suggest the use of complex techniques like pragmatic models when simple
information like typographical closeness is being ignored. However, while lexical
information might help with these examples, there are many cases of alias errors
reflecting incorrect word choice where it would not help. These examples are used
because they are easy to follow, but the techniques for applying pragmatic knowledge
which are the focus here are kept free of dependence on lexical information because
there will be many cases where that information would not be helpful and where
pragmatic context offers the only clues.

2.5 Research Goals and Focus

Our overall goal is to explore the use of pragmatics for resolving ill-
formedness, and particularly alias errors. Thus the primary focus is on developing
mechanisms for modeling pragmatic context and for applying that model to suggest
corrections for ill-formed inputs. The central theoretical issues involved in this effort
include:

" what sort of pragmatic information is helpful for ill-formedness resolution,

* what kind of pragmatic model can capture the necessary features of the
pragmatic context,

" how to predict from a given context in that model the space describing the
agent's possible next moves and related possible queries,

" how the syntactic and semantic constraints in the ill-formed sentence can
also be captured and used, and

" how a heuristic search can be organized that makes effective use of all
these sources of information.

This theoretical core of the research is set in the context of an
implementation of the developed approach within the Janus NL system, which serves
as a testbed for the ideas, demonstrates feasibility, encourages clarity, and allows for
experimentation. Full ad~vajtv is taken of the availability of Janus system
components to help make the implementation more extensive and realistic than might
otherwise be possible. However, there are still important secondary issues involved in
a full integration of this system with Janus, such as an implementation in Janus of a
partial parsing facility, that are beyond the scope of this effort.

In order to make significant progress on a topic of this scope, it is importar
to narrow the focus to a sensible subset of all the relevant issues. Thus, there are many
issues that a full-fledged robust NL system would need to handle that are ignored here.

* We limit ourselves here to alias error examples in an expert advising
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setting.

I*We only consider examples where the system's plan library already
contains all the domain plans relevant to the user's input.

3* We also assume that the user shares with the system correct and complete
beliefs about the possible domain plans that bear on the examples,
ignoring cases where the user's query is based on incorrect plans.

* In our plan-based pragmatic model, we assume that the system will begin
an interaction with a correct picture of the user's single top-level domain
goal. Thus, while we do consider the use of our model in a tracking mode
across a sequence of queries, it is always within the planning space
dominated by the known top-level goal; we do not concern ourselves with
the plan recognition issues involved in deducing the user's goals from her
actions. As pointed out in Section 5.2, those issues are receiving a great
deal of attention from other researchers, work that does not need to be
duplicated here.

3* No special provision is made for noticing interactions or interference
between different actions of a plan.

3 Our logical representation is a simple one, avoiding issues like
representing time, complex quantification, or possible worlds.

o The database of facts used to describe the world is treated as fixed, taking
advantage of the nature of the expert advising setting to assume that the
user will not be performing actions during the consultation that would
change the world's state, and that changes due to outside causes can also
be ignored.

* We avoid cases where other issues like anaphora resolution would3 complicate the ill-formedness processing. For instance, in the sentence

Chop the onion in a food processor and then FOO it.

FOO might mean add orfry if it refers to the onion, but empt' or wash if it
refers to the processor. Such collisions would cause serious trouble for a
general-purpose NL processor, though a well-founded pragmatic approach

* still offers the best path to a solution even of such difficult cases.

* We also do not explore here the generation component for interacting with
the user about the detected ill-formedness and proposed corrections that
any full implementation of pragmatics-based ill-formedness correction
would also have to include.

Thus the research focus is exactly on formulating a model for pragmatic context,
predicting from that model the space of the user's possible actions, and using those
predictions in a heuristically sensitive way to identify possible corrections for alias

3~errors.
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CHAPTER 3

3 EXISTING APPROACHES FOR HANDLING ILL-FOR.MEDNESS

In this chapter, we survey the directions that earlier researchers have taken
toward dealing with ill-formed input. (Surveys of other work i plan tracking and
pragmatic modeling are included later in the appropriate chapters.) While many
approaches have been suggested for how to encode and apply the additional knowledge
needed for resolving ill-formedness, the attempts can be divided into two broad cla.ses
which we term syntactically driven and semantically driven and that conclate well with
the approaches those researchers tend to use for parsing well-formed input. The former
are approaches that are closely tied in with the svntactic parser and that rely on
adjusting the input or the syntactic rules based oni the presence of ill-formedness in the
search for a complete parse, while the !atter instead try first to derive the possible
semantic structure of the input, uq;ng semantic constraints to suggest corrections for the
ill-formedness, and perhaps then relating the correction to a full syntactic parse. Some
of the semantically driven methods come close to using what we would class as
pragmatic contiaints in controlling the search for a resolution, but most of the methods
discussed do not make any direct use of pragmatic knowledge, although a system that
adopted one of these approaches could still apply pragmatic constraints after the fact to

filter the corrected input for pragmatic well-formedness.

3.1 Syntactically Driven Methods

I In a syntactically driven approach, some form of syntactic parse must be
achieved first, a parse of some fragment, at least, if not of the whole sentence, before
the system can draw on the semantics of the fragment in its semantic context to help
resolve the problem. This forms an initial bottleneck for syntactic approaches, since at
least a tentative decision needs to be made about what syntactic structure to try to build
before semantic or pragmatic knowledge can be applied. This requires extending or
relaxing the grammar in some way, so that it cai handle the ill-formed input. The
danger, of course, in thus loosening the grammatical constraints is that many spurious
interpretations will also be accepted, or at least that much time will be wasted in
eliminating the extra readings that syntax will now propose. Researchers in this
tradition have focused on ways to control this relaxation process so that the best
interpretation can be identified quickly.

The simplest style of extending a grammar calls for adding ill-formedness
rules directly to the normal collection. This was the kind of ill-formedness processing
available in the LUNAR grammar [601. Another approach is to use a separate body of
rules for ill-formed constructions, and to access the ill-formedness rules only after the
sentence fails to parse normally. This style was used by Harris in the ROBOT system
[251 for NL database access. He first tried to handle sentence fragments by adding

extra arcs to the ATN used for well-formed input, but found that that slowed down the
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processing of complete sentence input unacceptably, so instead created a second ATN
for sentence fragments, that was only tried when the ATN for complete sentences did
not find any interpretation.

More exact control is possible through careful arrangement of the extended
rules, so that ill-formed paths through the grammar are searched in order from least to
most anomalous. Minton, Hayes, and Fain [38] outline an approach in which each
grammar rule has an attached weight, with each parse path then collecting a sCore.
These scores are positive for well-formed interpretations, but negative for ill-formed
ones. In this way, they propose that the same mechanism that would allow choosing
th, rno t l1cly dniung ambiguous weii-fornied interpietatioins could also be extcnded
to finding the most likely ill-formed parse. The problem with this sort of approach, of
course, is working out such a set of weights and a composition function. The difficulty
is that much of the contextual information that must be applied to making the decision
about which ill-formed interpretation is most likely will not be available at the point
where the parser must make its initial decision, since the actual "cost" of any
particular ill-formedness cannot be judged from local context alone.

Weischedel and Sondheimer's meta-rules [52, 55, 56] are an elegant
formalism for controlled relaxation of a grammar. Meta-rules are IF-THEN rules
whose IF clauses contain diagnostic predicates that test whether the parse state is one
to which the rule should apply, and whose THEN clauses make the desired changes in
the input string or parser configuration to allow the parse to continue. They are
intended as a mechanism for encoding controlled relaxation of the grammar, where
rules are only relaxed in the presence of explicit indications that that particular
relaxation is appropriate. Careful formulation of the IF parts of the rules can help
protect against a flood of spurious parses, as can heuristic choices of where in the
sentence to begin applying the relaxations [44]. The rules are intended to capture
frequent error types. They are not necessarily syntactic, but since they were first
conceived of and organized as an adjunct to a syntax-first grammar, they have a
primarily syntactic feel. Again, this is mostly a structure in which a real theory of
likely types of ill-formedness could be (but has not yet been) expressed.

There is a tradeoff in all such syntactically-driven systems between power
and time. The power in the methods we've looked at so far comes from their attempt
to relax or extend their grammars selectively in order to accept those cases of ill-
formedness that are most likely, and that thus are fairly easy to search for. However,
the more the grammar rules are relaxed, the larger the space that must be searched,
which costs time, and the greater the chance of making the wrong correction. One
approach that has chosen to allow a large degree of relaxation at the cost of increased
search is Trawick's [53] ill-formedness component for the REL system. While he
implemented a sequence of increasingly more powerful strategies, in the hope that easy
corrections would be found first where possible, his processor before giving up would
try replacing in turn each word in the input with all other words in the dictionary that
were sufficiently lexically similar, trying to reparse the sentence for each such
substitution.

A somewhat different approach is found in the EPISTLE [281 work at IBM,
where instead of relaxing the grammar to achieve an exact parse, an approximate parse

structure is built by assembling whatever well-formed fragments have been found in a
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bottom-up syntactic parse. While highly robust in that it will produce some structure
for almost any input, the roughness of the resulting structures represents ambiguity that
has only been postponed and will still need to be dealt with by later stages of
processing. In addition, in the presence of alias errors, some of the fragments in such a3partial parse may not actually belong anywhere in a parse of the intended sentence.

In summary, most syntactically driven ill-formedness methods have focused
on controlling the relaxation process so as to find a way past the bottleneck of building
an initial representation without creating an impossibly large search space. The use of
semantics in such systems for ill-formedness has usually been a direct extension of its
use for well-formed input, typically as a filter and analyzer applied to proposed
syntactic parses. Most syntactic approaches nave so far made little attempt to model or
apply pragmatic knowledge for ill-formedness.

1 3.2 Semantically Driken Methods

To some extent, a parser that is organized around the semantics of key words
in the sentence can simply ignore some syntactic ill-formedness issues, since they will
not be noticed. Some semantic parsers, indeed, have paid little attention to syntax, and
thus would not notice certain types of ill-formedness. For example, the semantic
grammar of Burton's SOPHIE CAI system [7], while looking for a predicted case
filler, would simply skip over words that did not fit the predicted context, like very in3 the command

Insert a very hard fault.

Even if such a parser does also check syntactic features, because semantic
context is guiding the process, these can be easily relaxed in cases where no correct
parse can be obtained, letting a partial sense of the meaning be built up from the key
words, and ignoring portions that are not understood. The advantage of this approach
is that an idea of the semantic content is established early and is thus available for use
in the completion of the syntactic parsing. This can help to limit greatly the searzh for
possible corrections, since only possibilities permitted by the semanuc context need to
be considered. On the other hand, the danger is that this skimming process may miss
significant features of the input through premature commitment to particular semantic
items. For example, Schank's Integrated Partial Parser [47] for understanding
newspaper stories used a measure of contextual interest to determine which words in
the input would be parsed, with elements of the text that did not happen to fill slots in
the chosen script simply being skipped. He points out that this sort of process can go
badly wrong when some unusual feature causes the wrong script to be activated. This
sort of "jumping to the wrong conclusion" would require a second, more cautious
parsing pass to repair.

Hayes' FlexP system [261 used a bottom-up pattern-matching parser and a
limited-domain semantic grammar to handle various sorts of ill-formedness, including
interjections and restarted sentence-. He relied heavily on semantic patterns embodied

ma ternstin the grammar rules to fitll in missing elements or ignore extra ones; for instance, in a
message processing domain, the ill-formed input

Idisplay new about ADA
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would have the noun messages filled in when the rest of the input matched the
"display message-description" pattern. He stresses that this technique can only be
applied in a restricted domain for which such a semantic grammar is possible.

Working with Carbonell, Hayes continued to work on exploiting semantics
for ill-formedness with the CASPAR and DYPAR parsers [13, 27]. CASPAR parsed
commands robustly by using expectations generated by the main verb. DYPAR was a
more powerful version using multiple parsing strategies including recursive case-frame
instantiation with equivalence transformations. In their approach, to parse a sentence
with an omitted preposition like the following,

Send message John Smir/h.

the parser uses semantic expectations generated by the verb send to determine the
proper case marker for the user John Smith, ruling out in or of as incoherent. They go
on to make use of a certain amount of pragmatic information by settling on to because
the destination is a required case for send in this pragmatic context. They also use
these semantic case-frame expectations to make other sorts of ill-formedness
processing like spelling correction more efficient, by limiting the possibilities that the
recovery processor must consider to those that are predicted by the semantic
expectations. We certainly agree with them that making use of semantic expectations
will lead to a more efficient recovery process than one that considers all possible
corrections across the whole dictionary. However, we do not agree that a semantic
grammar is necessarily the best way to capture those semantic expectations, partly
because the model of pragmatic context must be much richer than can be included

-solely in the case frames of the parser, and also because that style of parser is heavily
dependent on the identification of the head verb, so that an error in recognizing that
word can lead to a cascade of spurious attempted corrections.

Granger's NOMAD system [19] handled sentences with unknown words in
them even when that word was the main verb by using expectations to deduce the
word's meaning from context. For the sentence

Enemy scudded bombs at us.

the system would first use syntactic and morphological information to deduce that
scudded is a verb. It would then use a combination of semantic knowledge about the
kinds of actions that can link enemies and bombs along with semantic preferences
about which categories of verbs, nouns, and prepositions frequently combine to
propose the vrh-category propel. Granger's semantic preference mechanism [18] in
effect encodes a certain amount of pragmatic information, such as that enemies are
pragmatically more likely to throw weapons at us than for us. He also uses a small
amount of pragmatics when he tests the proposed interpretations for consistency,
eliminating cases of goal violation like an enemy ship peacefully delivering weapons to
a friendly ship. However, his pragmatic model is still quite limited compared to the
sort of plan-based model we are considering here. It appears to maintain only an
average pragmatic context across all possible situations, rather than a model of the
current situation. For instance, for the sentence

Contact gained on Kashin.

his system does not have enough sense of pragmatic context to distinguish between (a)
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the interpretation in which the speaker gained contact with Kashin and (b) that in
which the speaker's current contact advanced on Kashin. Presumably, a richer model
of the pragmatic context (whether in terms of scripts or plans) would be able to resolve
that ambiguity pragmatically by knowing whether or not the speaker is already in
contact with the Kashin, or whether the speaker has a current contact other than the
Kashin that could be the subject in interpretation (b). (Of course, naval radio messages
may not provide enough context in general to allow the plan tracking necessary for
such a model.) Effective use of pragmatic information requires such a richer context
model.

Thus while semantically driven systems have made extensive use of the
suggestive power of semantics for ill-formedness detection and correction, they have
been limited in that they were able to capture and apply very little pragmatic

knowledge. Their early and heavy dependence on semantic clues from the ill-formed
sentence also implies a danger of jumping to incorrect conclusions, and ignoring or
overriding available syntactic or lexical information that supports a different
interpretation.

Carberry's work [10] with pragmatically ill-formed input is discussed in
Section 5.2. Her approach covered a limited and unusual class of ill-formedness,
sentences which are interpretable syntactically and semantically but where that
interpretation then fails for some reason in the back-end system, and she used a
pragmatic context model based on a tree of domain plans to suggest corrections for
such cases of ill-formedness. The approach taken here is closely related to her work
and takes it in directions some of which she herself suggested, extending her context
model with a metaplan layer and applying it with new heuristics to a different and more3 problematic class of ill-formedness.

2
I
I
I
I
I
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I CHAPTER 4

3 OVERVIEV OF A PRAG.MATICS-BASED APPROACH

4.1 Basic Approach: Linking to the Pragmatic Context

Our basic approach can be described as a heuristic search for links between
the partial interpretation of an ill-formed input and the predictions of a pragmatic
context model. It divides into two pars, first constructing a rich model of the
pragmatic context that outlines the space of probable next moves on the agent's part
and the queries that those moves might motivate, and second a method for extracting
existing syntactic and semantic constraints from the ill-formed query and heuristically
combining those constraints with the predictions of the pragmatic model to yield a
ranked set of corrections for the ill-formedness. In this section, we describe the
3ipproach as a whole, together with presenting an example, to give a general
understanding of it. Later sections of this chapter then discuss some of the theoretical
implications of this choice of approach and fill in the peripheral elements of the picture
like wildcard parsing and the expert advising setting, while the following chapters
present in detail the plans and metaplans that make up the pragmatic context model and
the heuristics applied in searching for links between the predictions of that model and

* the partial interpretation of an ill-formed query.

The example we will follow in this section concerns organizing a search for
an airliner downed in the North Atlantic. Suppose the agent's first query to the expert
is the question

What was its last known location?

followed by the ill-formed query

Where is the case in Iceland?

(That query might be well-formed in a legal context, where case would mean lawsuit,
but in a naval domain, case in the sense of situation is the only relevant usage.) Since
the system can find no well-formed interpretation of the latter query, it must attempt
ill-formedness repair by bringing to bear its model of the pragmatic context.

The system's pragmatic model is based in part on a library of domain plans
for how agents can deal with situations of the given type. Since we assume that the
system is already aware of the agent's top-level goal, here to arrange search and rescue
for the downed airliner, it knows which domain plans are relevant, here including ship-
search, air-search-from-base, and air-search-from-carrier. These domain plans are
organized into a classification hierarchy based on their preconditions and effects, so
that the plan class search-for-downed-plane is divided into the three plan subclasses
just listed, and each of them is in turn further divided into subclasses, so that ship-
search might have subclasses for navy-vessel-search and merchant-vessel-search. A
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node in that classification hierarchy thus stands for a subclass of all the possible plans
to achieve the goal, and that node can thus represent a stage in the agent's refining of a
proposed solution. Each plan class also specifies those subactions that are required by
all plans in that class, so that air-search-from-base would include the actions of flying
the planes to the area, flying the search pattern, and then getting them back to the base.
A deeper plan subclass, air-search-from-base-with-refueling, might also include
actions for deploying tanker planes and performing in-flight refueling.

The actual pragmatic model includes these domain plan classes as the
arguments to metaplans that model the agent's actions in trying to build a plan to
achieve the top-level goal. These problem-solving metaplans capture the agent's
selection of particular plan subclasses or subactions for exploration as possible
elements of the solution, and also the possible queries that the agent might ask as part
of exploring those nodes. The particular collection of metaplans used in Pragma
models the structure of plan-building and query-generation that typifies this expert
advising setting; an equivalent model in other discourse settings would require
different sets of metaplans. A particular *build-plan* node in the metaplan tree, for
example, models the agent's exploration of a particular class of domain plans, and that
branch of the metaplan tree then models the agent's possible next moves toward further
refining the plan, instantiating its variables, or asking queries to gain information to
make such choices. For example, the first query about the last known location of the
airliner is a query that the system recognizes as related to the entire class of
search-for-dowsned-plane plans.

That model of the space of the agent's possible next moves and queries is the
key to applying the pragmatic knowledge to resolving the ill-formedness. The
approach is to extract from the ill-formed query a set of partial interpretations that
encode as much as can be derived from the syntax and semantics of the remaining
sentence by treating each single word of the input in turn as a wildcard. Given the
assumption of a single-word error, one of those partial interpretations will be a partial
description of the intended query. The technique is to search in the metaplan tree for
nodes that predict queries that can be linked to one of these partial interpretations, with
each such link suggesting a possible correction to the ill-formed query.

Our proposal for deriving partial interpretations from the ill-formed query
based on the single-word error assumption is to replace each word in turn with a
wildcard, meaning an empty slot that can take on the syntactic and semantic roles of
any known word. Running the parser will then attach to this "wildcard" slot whatever
syntactic and/or semantic restrictions are required by the rest of the sentence in order to
achieve a meaningful parse, if one is possible. Different parsers might have to
implement this approach in different ways, perhaps using multiple passes assuming
different syntactic roles, but the final result would be a set of partial interpretations
where some of the terms in the logical form would themselves be wildcards, reflecting
the unknown semantics of the original wildcard word. For some word positions,
naturally, even replacement with a wildcard will not enable any complete parse of the
sentence, so those will not produce any candidate partial interpretations. For example,
wildcarding is in our current example to produce

Where ***** the case in Iceland?

does not produce any valid parses. The two word positions that do produce parses here
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are where and case, with the former producing a set of interpretations including those3for
What is the case in Iceland?

5 and
Which is the case in Iceland?

while the latter produces an interpretation where the wildcard substituted for case is
included in the logical form with the restriction that it stand for something of type
locatable-entity, so that the query asks about the location of the unique object of that
unknown class that is in Iceland. The system would then search for nodes in the
metaplan tree that could be linked to those partial interpretations.

The metaplan tree not only models the space of the agent's possible problem-
solving moves, it also is annotated with a heuristic component that derives a score for
each node in the tree reflective of its relative likelihood as a next move given a
particular preceding context. In deriving these scores, the heuristic component draws
on information about the shape of the metaplan tree, the particular metaplans involved,
and the assumed world knowledge of the agent. These scores are used both to direct
the search of the metaplan tree, guiding it first to nodes representing more likely moves
from the ")revious context on the agent's part, and also to rank the solutions found,
when there are more than one.

In the current example, the search for nodes that can be linked to the partial
interpretations begins at the previous context node which matched the q. -y about the
airliner's last known location as relevant to the search-for-downed-plane plan class.
One of the plan subclass branches within that plan class is the air-search-from-base
branch, whose plans for flying the planes from the base to the search area refer in their
preconditions to the location of the base, so that queries about the location of an airbase
are in turn predicted as possible problem-solving moves on the agent's part when
exploring that branch. The node containing that query can be linked with the partial
interpretation in which the wildcard for case is allowed to match any locatable-entity,
suggesting that the query may be for the location of the base in Iceland whose planes
might be used in the search.

The other set of partial interpretations of the ill-formed query were for
queries about the situation in Iceland, but the system would not find any related queries
in the nearby metaplan tree which could easily be linked to them. One could imagine

the WHAT/HOW 
is the case in Iceland?

form linking with a projected query about the readiness of the squadron based there,
which would be one of the relevant queries predicted in the metaplan tree, but only if
the system could connect the situation entity stemming from case with the readiness
condition of a squadron. The partial interpretation corresponding to

WHICH is the case in Iceland?

would be even harder to match, since it would require a discourse context that had
somehow established a set of situations as accessible discourse entities. The search for
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nodes that can be linked to each partial interpretation also scores the resulting matches,
and those scores would be used to rank any links resulting from these interpretations
against those where case was wildcarded, with the likely result that the latter would be
preferred.

Thus we see that the basic approach makes use of a rich model of the
pragmatic context to map out the space of likely next moves on the agent's part, and
then attempts to link the partial interpretations of the ill-formed input that are poss-ible
under the single-word error assumption to the queries predicted as likely next moves in
the metaplan tree. The strong contextual constraints allow the system to identify the
single-word corrections to the input that produce queries most closely related to the
pragmatic context.

4.2 Comparing the Linking Approach to Alternative Approaches

As outlined in the preceding section, the basic approach taken here is to
derive predicted plan-building moves and queries from the metaplan tree in the
neighborhood of the previous context and to search for nodes in that space that can be
linked to the partial interpretations of the ill-formed input that are possible under the
single-word error assumption. In this section, we compare this approach to the existing
syntactic and semantic approaches to ill-formedness.

The major difference between this linking approach and the syntactically
driven approaches described in Section 3.1 is in where the initial hypotheses of
possible corrections come from. In the syntactic approaches, those hypotheses are
generated at the syntactic level, when the parser first builds a structure containing the
ill-formedness. For example, a metarule approach [56] to the lack of agreement in the
sentence

The ships in Kennedy' s task group is in the Med.

would relax the agreement rule between the subject NP and the verb is in the parser
itself, effectively hypothesizing a correction of is to are. The semantic and pragmatic
processing of these proposed corrected utterances were then treated in the normal way.
In contrast, if the linking approach suggested here were applied to this example, it
would take the more radical step of wildcarding each word in the input, resulting in at
least two partial interpretations, one where a wildcard of ships was restricted to some
singular entity in the task group, and the other where a wildcard from is could be any
verb that can take ships as a subject and a PP with in. These much more open syntactic
possibilities would then be used to search for links in the pragmatic context, with that
context being the initial source of suggested corrections.

The argument as to which approach is better depends heavily on which set of
constraints offers the most information in the particular class of examples. For cases of
ill-formedness that can be treated as agreement error:,, the syntactic constraints are very
strong, able to propose just one or two possible corrections. In such cases, it makes
good sense to start with the syntax, and use semantics and pragmatics to check the
results of its proposals. However, there are many classes of ill-formedness for which
syntactic constraints offer no guidance. An unknown word, for example, might be
assumed to be a garbled version of a known word, but a relaxation metarule could only
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propose the replacement of it by every known word of that class, and with alias errors,
the problem is even worse, since the parser does not even know which word to try
replacing. For such classes of ill-formedness, where there is little that syntactic
constraints can offer, it is much more efficient to let the initial hypotheses come from
the pragmatic context, and then to apply the syntactic and semantic constraints from
the actual utterance.

There is a much close-r connection between the linking approach taken here
and the semantically driven approaches discussed in Section 3.2. Hayes and Carbonell
[13, 271, for example, use the semantics of the main verb in a sentence to provide

constraints that are used as early as possible in the correction phase to restrict the set of
possible corrections. Their spelling corrector, for example, is restricted to considering
possible corrections of a class that their semantic grammar allows in that position in the
sentence. Thus, while the generation of possibilities is still done in the parser, they
apply the highest level of constraints available in their system very early on as a filter
on those possibilities. Granger [19] carried that approach further, using some general
pragmatic information so as to create expectations that could suggest corrections e-en
for the main verb in a sentence. However, the original suggestions for fillers were still
generated by taking, for example, all the actions that could link a particular subject and* object.

Thus these semantic approaches move in the direction of applying higher
levels of constraint earlier in the correction process, a move that the linking approach
used here takes even further, since here the initial candidates for correction themselves
are derived from the pragmatic context. The only replacements that are considered are
those that the metaplan model shows are closely connected to the previous context and
form likely follow-on queries. Those possibilities in turn are filtered against the
syntactic and semantic constraints, rather than syntactic and semantic possibilities
being filtered by pragmatics.

I This heavy dependence on pragmatics is partictlarly appropriate to difficult
classes of ill-fornedness like alias errors where syntax and semantics offer only weak
constraints or none at all on the possible corrections. Linking as presented is, in a
sense, the heavy artillery required for the hardest classes of ill-tormedness. In those
cases where syntax or semantics are able by themselves to suggest particular
resolutions for the ill-formedness, it may be more efficient simply to test those
suggestions against the closely-related pragmatic context rather than to find all
contextual possibilities and then apply the syntactic constraints. One possible direction
for integrating the two approaches might be to capture such syntactic and semanti'3preferences in the results of the wildcard parsing, rather than making that a flat set of
all possibilities, although that representation would thereby become more complex.

In summary, the rich pragmatic model developed here provides constraints
that are important data for any ill-formedness strategy, no matter how that strategy
organizes the search of the space of possible corrections. The linking strategy
presented here for applying that pragmatic knowledge by using it as the initial
suggester of possible corrections that the process then tries to link to partial
interpretations of the ill-formed input is a useful and appropriate model for the difficult
classes of ill-formedness being considered here. However, it may need to be modified
when it is integrated as part of a general-purpose NL system dealing with all classes of
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well-formed and ill-formed input so that the strongest available constraints in each case
can be brought to bear early in the process to restrict the search space as much as
possible.

4.3 Selecting the Lexel for Linking

Given the outlined approach for these classes of ill-formedness of linking to
the pragmatic context model, a further question arises concerning at what level to do
the matching that tests for the possibility of a link between a metaplan tree query
prediction and the partial interpretation of an ill-formed sentence. The links could
theoretically be made between sentences, interpretations, or contexts, but we argue
here that the interpretation level is the wisest choice.

The issue is choosing at what level to try matching the ambiguous partial
input against the expected goals that are suggested by the pragmatic context. The
simplest model of the possibilities comes from representing the problem as a
bidirectional search that either works forward from the ill-formed input building
toward possible plans that it might be expressing, or else starts from the current plan
context and builds toward queries that might make sense in that context. In Figure 4.1,

ill-formed => partial -> plan -> previous
sentence => interp -> node -> context

I I I
correct <- query <= plan <= previous
sentences <- interp <= node <= context

Figure 4.1: Choosing a Level for Matching

the top line, running left to right, represents building forward from the ill-formed input
actually found through the set of partial interpretations it might be expressing toward
the plan steps of which they could be realizations, while the second line, running right
to left, represents the search backward from predicted plan context through the
interpretations of possible queries to the set of possible sentences that would be
coherent in the context.

The key question of strategy is at what level of representation to try to make
the connection between some partial understanding of the input from the top line, on
the one hand, and the probable next queries that one can deduce from the plan context
model on the bottom, and the main variable affecting the choice is the branching factor
of the search in the two directions. While it would be possible to build forward from
the ill-formed sentence to any one of the analysis stages, such exploration comes at an
increasing cost in ambiguity at each stage, due to the uncertainty created by the ill-
formedness. For instance, if a query to a university database about class rank came out

What is Judv Smith's tank?

assuming that tank is the error, treating it as a wildcard, and building forward would
find partial meaning representations asking about every attribute applicable to students.
Each of those possible queries could in tum arise as a query node motivated by various
planning nodes in various contexts. Working in the other direction, building backward
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from the previous plan context through the probable next plan steps to query
interpretations and even to possible sentences also carries an increasing cost in
ambiguity at each stage of the process, often a substantial one. There are so many
different ways to phrase a question with the same meaning representation, for example,
that building backward on the second line all the way to suggested correct sentences in
order to do the matching at the sentence level would be quite costly. In the same way,
the number of plan nodes that can motivate a given query when considered without
respect to any known previous context will also be quite large. 'Ihus, it seems that the
combinatorics argue for doing the matching at the level of partial logical
interpretations.

3 Of course, this bidirectional search model oversimplifies the problem
somewhat, where the actual goal is to apply the strongest constraints available as early
as possible in order to restrict the search space as much as possible. There are cases
where infonnation can be derived from one path to help constrain and speed the search
in the other. For example, the search in the metaplan tree for plan context nodes that
might have generated the current ill-formed query can be made more efficient by
making heuristic use of a list of the atomic sentences in the partial interpretations, to
encourage exploration of paths whose preconditions overlap heavily with those found
in the partial interpretations. Nevertheless, the basic choice of doing the linking at the3 level of the logical interpretations still seems to hold.

! 4.4 Wildcarding for Syntactic and Semantic Constraints

In order to do matching against pragmatic patterns, we must find a way using
syntax and semantics to derive from the ill-formed sentence some representation for
the set of possible meanings it could have, given our assumption that any single word
in the input can be relaxed. We want as tight a characterization of this space as
possible, one that applies all the syntactic and semantic constraints available. For
example, in the sentence

How many courses in moth do I still need?

when we try to relax the word moth, syntax tells us that it must be a noun or pronoun.
Semantics can further restrict this to nouns of semantic class X for which there is some
interpretation for the phrase courses in X, which would include in this case
departments, areas, colleges, and even buildings. (There are also interpretations where
the in PP is taken as modifying the verb, such as in total or in 86A, but we ignore these
here.) Semantics on its own might be able to prioritize those semantic possibilities, to
say that in buildings is in general a less likely interpretation than in departments, but
discriminating among such possibilities will require input from pragmatics. For now,
our goal is to fimd a way to capture all of these syntactic and semantic constraints,3 building a template that can then be matched against pragmatics.

The search for an effective strategy for computing some representation of the
syntactic and semantic possibilities depends heavily on the style of parser in use. The
most straightforward way, replacing each word in the sentence with every word in the
dictionary, is clearly impractical. Besides, that scheme (or any scheme based on
known words) does not offer any help with unknown words, even ones that are
synonyms to existing words, and whose semantics are therefore easily representable.
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This sort of generate-and-test approach would only be practical if we could find a small
set of classes of words, so that we would need to make a test run of the parser only on
each class.

A unification style, complex-feature-based parser [48] is one style of parser
that we believe would allow a convenient and elegant way of computing a semantic
representation for the possible meanings given the single-word error assumption. Such
a parzer u ,i nifieation to determine whetb-r its rules (like (S -.> NP VP)) can apply
to the input sentence by unifying the terms in the rules with elements of the input
sentence. The unification also carries along feature values that enforce syntactic
constraints like subject-verb agreement: (S -> NP(number=N) VP(number=N)). In
order to determine what sentences are possible if a given word is relaxed and allowed
to be replaced with any other word, one can simply replace the given word in the input
with a wildcard value, none of whose features are specified. During the course of the
parsing, this wildcard will pick up the appropriate restrictions from the various rules
that apply. For instance, in the previous example about How many courses in moth...,
for the NP rule to apply to moth, its part of speech would need to be bound either to N
or NPR. Each consistent set of rule bindings will yield an interpretation of the
sentence in which the wildcard that replaced the suspect word has collected exactly the
syntactic constraints that were implied by the rest of the sentence given that
interpretation. Because there will in general be more than one consistent set of rule
bindings, this would compute a set of partial interpretations for the sentence, with the
suspect word's wildcard in each case constrained as necessary. We can use semantics
concurrently to filter those syntactic interpretations and to compute a set of partial
semantic formulas that represent the possible meanings of the sentence under the
single-word error assumption, and those semantic formulas can then be matched
against the predictions from the plan tree.

Note that the partial interpretations that result will also contain wildcard
items, where the missing constraints due to the wildcard word leave part of the
semantic representation unresolved. In the simplest examples, the single wildcard
word will produce a single wildcard in the interpretation. For example, one partial
interpretation of the ill-formed sentence

The girl named Aan is tall.

in the WML form described in Section 8.3 is shown in Figure 4.2.

(assert (tall (iota ?G girl (name-of ?G +W+))))

Figure 4.2: Interpretation with Single Wildcard

(Other interpretations would include the girl named well and the girl named yesterday.)
However, there will also be examples where a single wildcard word produces multiple
logical wildcards. For example, the partial interpretation of the phrase the vocation of
Fox shown in Figure 4.3 includes both a wild entity class +W+ and a wild function
+X+. (This can be read as the unique entity ?V whose type is +W+ and which stands
in the +X+ relationship to the unique vessel whose name is Fox.) Since the semantic
encoding of the relationship implied by the word of in this case depends on the
meaning of the head noun, we get more than one logical wildcard in the partial
interpretation.
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(iota ?V +W+
(+X+ (iota ?F vessel (name-of ?F Fox))

?V) ) )
Figure 4.3: Interpretation with Two Wildcards

In the face of an alias error that makes a sentence unparsable, we propose the
use of wildcard parsing to compute a set ,f possible partial interpretations of the input.
In theory, that set could be very large, since each word in the sentence must be
wildcarded in turn, and each wildcard parse may find more than one possible
interpretation given different substitutions. On the other hand, our explorations seem
to show that wildcard parsing is usually able, given the single-word error assumption,
to localize the problem fairly well. One reason for this is that many of the words in the
sentence, even if wildcarded, will not yield any legal sentence interpretation. For3 example, if we have the error of courts for courses in the sentence

Are any Humanities courts offered on weekends?

the only attempts that will yield valid partial sentence interpretations will be those
where courts and Humanities are wildcarded. While courts could mean courses,
lectures, or events, and Humanities could mean tennis, grass, or moot, wildcarding of
the other words in the sentence does not yield any valid sentence interpretations. In
this way, wildcard parsing itself can help to localize the source of the error.

In addition, there is often enough redundancy present that the successful
wildcard attempts can tightly constrain the wildcard slot. For instance, in the sentence

I want so take a course in computer science.

3 syntax alone can constrain things so that the third word can only be to. In a wildcard
parse, this result would be discovered naturally when the attempt with so wildcarded
found only a single rule that would lead to a full sentence parse.

Naturally, all of the constraints encoded in the wildcard parses of an ill-
formed utterance could also be discovered, expressed, and applied in other ways, for
example, by explicit lists of possible instantiations or by annotations for syntactic and
semantic constraints attached to a partial parse tree. Wildcard parsing is proposed here
not as a new source of information but as a convenient form for expressing the derived
syntactic and semantic constraints, while the unification-based parsing approach
appears to be a convenient and elegant way to compute the constraints in that form.

S4.5 The Expert Advising Setting

Because the pragmatic model depends in part on capturing in its metaplans
the structure of the discourse setting, so that the agent's possible moves can be
predicted. a particular setting had to be chosen in which to develop the model. The
example discourse setting chosen is the expert advising setting, that of a question
answering system able to understand NL queries robustly and to respond cooperatively.
This domain has been chosen by many researchers studying cooperative responses and
pragmatic modeling (including Carberry [10], who terms it the "information-seeking"
domain), both because it is an important target application for NL understanding
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systems and because it helps to isolate the problems involved in using pragmatic
context for robustness, allowing convenient study.

The expert advising setting is useful for the isolated study of issues related to
pragmatic context because it allows certain simplifications compared to the modeling
of more general types of discourse. First, the expert is assumed not to be pursuing
independent goals, but rather focusing entirely on assisting the user in meeting her
goals. Unlike some expert systems, where the user's input is at the level of overall
goals which the system then develops a plan ti achieve, in an expert advising system,
the initiative stays with the user. (This is why the term "agent" has been adopted here
in referring to the user of such a system, since her goals are directing the interaction at
every planning level.) Second, the expert advising setting reduces the problem of
modeling multiple interacting goals on the part of the agent, since the expert
consultation usually occurs within a single domain and around a single top-level goal.
Third, because the advising consultation happens apart from the agent's action in the
domain, the model of the domain context can be taken to be fixed for the course of the
interaction. These features of the expert advising setting that make it a useful
laboratory for questions of pragmatic context are discussed further in Section 6.1,
where Pragma's metaplan model for the agent's behavior in that setting is described.

The expert in such an interaction, of course, does more that just answer the
agent's literal queries. As a cooperative participant in the agent's problem-solving
process, the expert maintains a model of the agent's goals and of the plan that the agent
is refining and instantiating to achieve those goals, and uses that model to determine
what helpful information to provide in addition to the direct answers to the agent's
queries. In Pragma, just such a model of the agent's goals and of the problem-solving
process the agent is pursuing to refine a plan for achieving those goals is used also as
the pragmatic context model from which suggested corrections for ill-formed inputs are
derived.

The particular problem domains for which examples of expert advising
dialogues were considered include a student advising system, cooking advice, and a
naval mission planning system, with most of the examples appearing here taken from
the latter. In that domain, the system includes a database with information about the
positions, courses, and assignments of ships, and their readinesses, both overall
(expressed as the letter C plus an integer, from C1 to C5) and for particular missions.
The agents in that system are planning naval missions to respond to newly identified
needs or to compensate for or correct identified problems in fleet readiness.
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I

I CHAPTER 5

3 DOMAIN PLAN TREES FOR MODELING PRAGMATIC CONTEXT

5.1 Role of the Domain Plan Tree in the Model

1 If the pragmatic context is to be userul in interpreting ill-formed input, we
first need a way to model the pragmatic context of an interaction. The model used in
this work includes both domain plans, to capture the intended actions the agent is
considering to achieve her goals in the world, and a layer of metaplans which capture
the process of building a particular domain plan to achieve those goals from among the
possible plans available, including the information-seeking queries that make up the
agent's side of the problem-solving dialogue being interpreted. This chapter describes
the first of those layers, the domain-level plans. In Section 5.2 we consider the
substantial tradition in Al research for using plans to model the agent's intended
domain actions, comparing the different models used, and Section 5.3 explains our
theory of domain plans. Sections 5.4 and 5.5 then present an approach building on
work by Kautz [33] for using classification networks of plans to provide a model that
can represent the agent's plans to a flexible degree of detail and that also can model the
space of choices for further specifying a plan at each stage of refinement as the agent is
constructing that plan.

5.2 Existing Approaches to Plan-Based Models of Pragmatic Context

I There is a rich tradition in NL research for using plans to model pragmatic
context. Some of the first efforts along these lines came as part of exploring the
discourse structure of dialogue. Mann, Moore, and Levin [361 proposed a structure
called "dialogue games" to model the pursuit of goals by dialogue participants. A
request for help would be seen as an attempt to initiate a "helping-game", with
defined roles and expectations for the "helper" and "helpee" participants that served
to structure the discourse. Grosz [22] studied apprentice-expert dialogues gathered
during assembly of an air compressor and modeled the discourse structure in terms of a
hierarchy of focus spaces that was derived from a model of the structure of the task.
These focus spaces determined what entities were available as possible referents for
noun phrases at each point in the task. Robinson [45, 46] worked in the same domain,
constructing a model of the task in terms of a tree of goals and actions, with one branch
in focus at any particular time, and used that representation of pragmatic context to
interpret vague verb phrases in examples like I'm doing the pulley now. Sidner
[50, 511 has also worked within this tradition of using planning models for capturing

the state of the discourse, which she calls "plan parsing"; in terms of her recent work
with Grosz [24], the plan model can be used to define the intentional structure of the
dialogue.
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Other researchers have used this plan-based style of pragrhatic modeling and
the extra contextual knowledge it provides in order to generate cooperative responses,
meaning answers that provide more helpful information to the agent than just a direct
response to a query, and to interpret queries that were for some reason, while not
strictly speaking ill-formed, still pragmatically inappropriate or otherwise hard for the
system to interpret. The style of plan modeling that has been used in this line of
research has been adapted from early Al work in planning. Many of the formalisms
build on the STRIPS notation of Fikes and Nilsson [17], in which a plan is made up of
preconditions, actions, and effects, where the preconditions are assertions that must be
true for the plan to be applied, the actions are either atomic actions or subplans that are
required to achieve the plan, and the effects are the assertions that are the result of the
plan. A goal can be achieved in this style by successfully executing a plan which has
that goal as one of its effects. Before a plan can be executed, its preconditions must
either already be true, or must become goals of their own to be achieved. Once the
preconditions are satisfied, the actions are executed, by directly doing any atomic
actions and by setting up any complex actions as new subgoals to be planned for.
Researchers using plans to model pragmatic context have usually adopted some form
of this basic Al planning scheme, but with a different focus than that of traditional Al
planning. Traditional planning work is interested in constructing a plan to fulfill a
certain goal m a given problem situation, so that the issues are things like preventing
deleterious plan interaction. Pragmatic modeling, on the other hand, uses the plan
database to deduce from the agent's actions the plans that could be motivating them.
This bottom-up use of plans leads to different sorts of issues than normal work in top-
down planning.

Allen and Perrault [2] used STRIPS-like plans to represent the goals of
people in a train station setting. They worked out the necessary heuristics for
implementing a simple form of plan recognition, for instance that if a person is doing
action A, and A is a step in plan P for goal G, then perhaps the agent is trying to
achieve G. They then used their plan model of the agent's goals to provide extra
information that was also related to the agent's goals in addition to the direct answer to
a question, like supplying the departure time of a train as well, even when asked only
for the track number.

Carberry [8, 9, 10, 11] used plan context both to correct pragmatically ill-
formed input and to handle intersentential ellipsis. For example, one of her classes of
pragmatic ill-formedness covered cases where the agent's query, while syntactically
and semantically well-formed, referred to relationships that did not exist in the
system's database. Carberry used a model of the agent's plans and goals to suggest a
relationship that did exist and that was relevant to the tracked pragmatic context. For
example, if only full-time faculty can supervise independent study projects, and a
student who is trying to set up such a project asked

What is the classification of Dr. Smith ?

the query would be ill-formed because only students have "classifications". However,
the system could deduce from its plan model for setting up independent study projects
that the "status" of the faculty member is a similar relationship that is relevant, and
make the substitution. Carberry also used her plan context model combined with a
discourse component to interpret intersentential elliptical fragments like small bills
only in the example
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I want to cash this check. Small bills only.

I Carberry used a STRIPS-like scheme for her plan-based pragmatic model,
but added some refinements that were important for tracking and predicting the agent's
possible plans. For instance, she found it important to add a distinction between
I "preconditions" and "applicability conditions", where the latter is a precondition that
one would not plan to make true. While a student can become a CIS major either by
being admitted as a major when she first applies, or by later changing her, major, it
would not be reasonable for a current student who wants to become a CIS major to
plan to be dismissed in order to be able to be admitted as a major, and one does not
want the tracking system to propose such anomalous plans. Carberry avoids this by
making the state of not being a current student an applicability condition rather than
just a precondition of the admit-as-major plan. She also enriched the plan model with
other structures like a domain model that can judge the similarity between different
entities and relationships, for use in heuristic comparisons between multiple possible
suggested plan matches.

Kautz [33], another researcher concerned with plan tracking, has focused on
careful, logical definition of the meaning of both plans and hierarchies of plans, and on
questions of the adequacy and completeness of plan formalisms. He uses
circumscription theory to characterize the logical implications of the assumptions that
such plan tracking systems usually make:

" that the system knows about all possible plans,

* that all observed actions are part of some plan, and

" that the desired explanation is the one requiring the smallest number of
top-level plans.

The classification scheme presented later in this chapter that classifies plans on the
basis of their effects and preconditions and that is used to represent the agent's
partially-specified plans was inspired by Kautz's approach.

Pollack [411 has extended plan-based pragmatic modeling by representing in
the model what it means for the agent to perform an action as part of a plan for a given
goal in terms of the cluster of beliefs that the agent must have for an action to be
purposeful in that sense. This allowed her to represent and reason about examples
where the agent's beliefs about what actions would achieve a particular goal under
what circumstances disagreed with the system's knowledge. She used this richer,
belief-sensitive model to propose a mechanism whereby the system could generate
helpful responses i cases instance, following dialoguehelfulreponesin such css For instne nthe floigdaou

Question. I want to talk to Kathy.
Do you know the phone number at the hospital?

Response. She's already been discharged.
Her home number is 555-8321.

the system must be able to represent the agent's incorrect belief that Kathy is still in the
hospital in order to understand why, for the agent, knowing the phone number at the
hospital is relevant to talking to Kathy. Having recognized that incorrect belief, the
system can correct it and provide a helpful response, rather than answering the agent's
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literal question.

The domain plan model presented here will follow the STRIPS-like approach
used by the majority of researchers in plan-based pragmatic modeling. The approach
of Kautz in using classification networks of plans in his work in formalizing the
process of plan recognition will point the way here to including such a classification
approach in our formulation of plans, resulting in a model that allows representing the
agent's plans with a flexible level of detail and representing the incremental
development of those plans as the agent refines a solution to her problem. Pollack's
generalization of plan models in terms of the agent's beliefs is left for future work.

5.3 Theoretical Description of Domain Plans

Before discussing the classification structures built from plans, we briefly
consider the definition of plans as action sequences.

5.3.1 Actions and Ground Plans

The form used for domain plans in those systems that build on the STRIPS
model depends in large part on the form of the world model, the representation used for
the facts and primitive actions of the domain. The domain in such systems is modeled
by a collection of logical formulas representing all the relevant facts about the current
state of the world. In a blocks world example, such facts include assertions about the
robot arm and the status of particular blocks, assertions like those in Figure 5.1.

State Sl:
(arm-empty)
(block B)
(block C)
(clear B)
(on B C)

Figure 5. 1: Assertions Describe a Blocks World State

A primitive action in such a model represents a change in the state of the world that can
be brought about by the planning agent. (Indeed, such systems usually assume that the
only possible changes to the state of the world are results of the agent's own actions.)
Such changes are modeled by deleting those assertions that are no longer true after the
action, and adding any new assertions that the action makes true. For example, one
primitive action affecting blocks B and C in the world described above might be as
shown in Figure 5.2.

Action-Name: pick-up-B-in-state-Si
Delete-Lift: {(arm-empty), (on B C))
Add-List: {(holding B), (clear C))

Figure 5.2: Example Primitive Action

A ground plan in such a model is simply a sequence of primitive actions, as
shown in Figure 5.3. The delete and add lists for the ground plan as a whole are
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Plan-Name: reverse-stack-from-state-Si
Actions: (pick-up-B, put-B-on-table,

pick-up-C, put-C-on-B)
Delete-List: ((clear B), (on B C))
Add-List: ((clear C), (on C B))

Figure 5.3: Example Ground Plan

derived from those of its actions in the obvious way:

* the delete list of plan P made up of actions AI and A2 is the union of the
delete list of A2 with those formulas from the delete list of Al that are not3 on the add list of A2, and

* the add list of P is the union of the add list of A2 with those formulas from
the add list of Al that are not on the delete list of A2.

Using these rules transitively across sequences of actions, one can derive the delete and
add lists for any such ground plan.

3 5.3.2 Plan Schemata

3 While fully-specified ground plans like these can completely describe the
possible courses of action from a given initial state and their effects, they are of little
use in a planning system because they need to be worked out afresh for each new task
and situation. Ground plans cannot capture the similarity between pick-up-A and
pick-up-B, or the similarity between pick-up-B-in-state-SI and pick-up-B-in-state-
S2. Rather than working with the complete set of possible ground plans for each
possible initial state, the individual ground plans are grouped into plan schemata, with
variables (written here with prefixed question marks) replacing the constants found in
the ground plans. A single plan schema like that shown in Figure 5.4 can thus
represent the add and delete lists of many possible ground plans through its many
instantiations.

Plan-Schema-Header: (pick-up-block-from-table ?block)
Delete-List: ((arm-empty))
Add-List: ((holding ?block))

I Figure 5.4: Example Plan Schema

However, the definition of each ground plan is always in reference to the
initial state in which that plan is possible. When we group a set of ground plans into a
plan schema, we need some representation for this dependence on the initial state,
some test in terms of the schema variables that will tell for a given instantiation
whether this plan is or is not applicable in that particular state. To capture this
dependence, the plan schema is annotated as in Figure 5.5 with preconditions, formulas
in terms of these variables that determine if the action can be performed when
instantiated with particular arguments in the current situation. Any instantiation of the
variables in a state that makes the preconditions true is warranted to be permissible,
and to have the specified delete and add effects.

I The dependence of the plan schema on the proper instantiation of the
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Plan-Schema-Header: (pick-up-block-from-table ?block)
Preconditions: { (arm-empty), (clear ?block) }
Delete-List: { (arm-empty) }
Add-List: {(holding ?block)}

Figure 5.5: Plan Schema with Preconditions

variables to produce a ground plan is reflected by including those variables in the
schema header, represented as an operator applied to variable arguments, including as
arguments the union of all the variables for the included preconditions and actions, as
in Figure 5.6.

Schema-Header: (pick-up-block-off-block ?top ?bottom)
Preconds: { (block ?top), (block ?bottom),

(on ?top ?bottom), (clear ?top),
(arm-empty) }

Delete-List: ((arm-empty), (on ?top ?bottom)}
Add-List: {(holding ?top), (clear ?bottom)}

Figure 5.6: Schema with Multiple Arguments

The set of variables included in the header as arguments may be limited to a subset, if
the entities omitted are irrelevant to the goals of the plan. Thus the plan header may be
a way of specifying a relevant set of entities involved in the goals of the plan. This is
certainly true if no effects relative to the omitted entities survive to the delete or add
lists of the combined plan schema; for instance, if there are two robot arms available,
which arm is used to pick up and then put down a block may not have any effect on the
outcome of the combined plan. The header variables are meant to reflect all the
relevant dependencies in preconditions and effects.

To apply such a plan schema, one first instantiates the variable arguments to
actual terms from the domain; if the preconditions then turn out to be true, the
instantiated action is possible, and its execution can be modeled by using the
instantiated delete and add lists as before.

A final notational question concerns the types of the variables in the plans.
The domain axiomatization often includes among the precondition tests type checks on
the variables like (is-block ?block). These can be represented either directly, as
additional preconditions, or more efficiently by using a typed logic in which the type of
each variable is always specified.

5.3.3 Plan Schemata as Subactions in Larger Plans

Just as actions were combined into ground plans, plan schemata, in turn, can
be chained together into larger schemata, so that the actions of the larger schema are in
turn schemata. When schemata are combined into larger ones, the preconditions of the
combined schema are derived from those of the individual schemata: the precondition
list of a plan P made up of schemata Al and A2 is formed as the union of the
precondition list of Al with those formulas on the precondition list of A2 that are not
also on the add-list of Al. Such recursive plan schemata are important because one
way of phrasing the planning problem is as the search for a plan schema that can be
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applied to transform the initial situation into a final situation that meets the desired
goals. Since the properties of each plan schema can be derived from those of its
constituent actions, building a complete plan from these recursive schemata is formally
equivalent to building it directly from the primitive actions, but it can be much more
efficient, since productive sequences of actions can be stored together instead of being
recomputed each time.

Given a library of plan schemata, planning for a goal could be implemented
by searching the known set of plan schemata for those whose effects (add and delete
lists) unify with the desired goal or some clause within it, that is, where a substitution
of constants exists for the variables in the plan schema under which the effects list of
the schema achieves the goal. If instantiated schemata can be found whose
preconditions are currently satisfied, those are admissible plans for the given goal.
Failing that, instantiated schemata whose effects will achieve the goal may be found
with preconditions that are not currently satisfied, but that can in turn become goals to
be planned for.

Note that this model of plan schemata so far is simpler than that used by
some other researchers, who have developed more complex structures by building in
heuristic distinctions to make planning or plan-recognition easier. Distinctions often
made that we have ignored here include separating the effects list into a goals list,
meaning effects for which it is reasonable to invoke the plan, and other effects, which
may be thought of as side-effects that the plan does make true but that are not
reasonable goals for invoking the plan. Such distinctions are more important to
systems that are doing plan recognition, where the goal is to guess from an action
sequence which plans may have generated it. In Pragma, the space of possible plans is
instead expanded downward from a known top-level goal, so that the subactions of any
particular possible plan are already expanded as the tree is built.

I 5.4 Classifying Schemata for Modeling Plan-Building

The ground plans and plan schemata described in the previous section are
such as might be used in a planning or plan recognition system, but the purpose for
using plans in this work is a bit different. In this work, the goal is to use these
STRIPS-based domain plan schemata to model the process of considering alternatives
and constructing a plan to be used in problem solving. Thus, we need to consider what
kind of structure of plans will best represent the space of choices that the agent is
considering and the decisions she is making in such cases.

I In traditional planning, the primitive actions and situation model are taken as
given, and the important question is to work out how those actions may be combined
into plans that achieve given goals. The issues there focus around the efficiency of the
resulting plan, possible interactions between plans, and intelligent search of the plan
space to avoid undesirable interactions. Our goal, however, is to model the plan
elaboration process of an agent who knows the possible plans, but does not know the
situation. Thus, we are not concerned with building novel plans or working out
interactions between plans, but with choosing between known plans on the basis of
unknown facts.
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In this section, we describe an approach that classifies plan schemata based
on their effects and preconditions, and uses nodes in the resulting classification
structure to represent the agent's partially-specified plans during this plan-building
process.

5.4.1 Plan Classes

To model this process of elaborating plans, we define plan classes, which
specify sets of plans in terms of the preconditions and effects that they share. It is
these plan classes that will be used in our model where other systems would typically
use plan instances. For example, in our blocks world domain, one could define a plan
class for those plans that build a three-block tower from blocks A, B, and C, as in
Figure 5.7.

Plan-Class-Header: (build-3-tower A B C)
Preconditions: { (block A), (block B), (block C) }
Add-List: { (on A B), (on B C) }

Figure 5.7: Example Plan Class

This plan class description defines the set of plans whose effects include adding those
two add-list propositions. If we consider a situation where B and C are clear, but block
D is on A, then this set would include at least one plan in which D is first removed and
then B and A are stacked on C and another where B is stacked on C first, then D
removed and A stacked. In more complex environments, the plans that satisfy a
particular plan class description may differ not just in order of actions, but in which
actions are included and even which entities are affected by those actions, as long as
they meet the shared plan class specification.

A couple of formal concerns must be disposed of concerning the minimality
of the set of plans defined by a plan class description. Because a plan class like
build-3-tower in Figure 5.7 is understood to include all plans that meet the given
precondition and effect list restrictions, it also might be thought to include in any
situation a large number of plans that contain more preconditions than necessary to
produce their effects, extra preconditions unrelated to the actual actions in the plan.
But such "plans" would not fit our definition, where the preconditions must be
deduced from the actual preconditions of the constituent actions. Another possible
problem could be that a plan class description might be overly restrictive, including in
its preconditions a fact that is a precondition to only some of the plans that actually
could achieve the given effects, and thus not including some perhaps simpler means of
achieving the given goals. However, because plan classes in this system are defined by
classification over preconditions, beginning with a plan class that adds no precondition
restrictions of its own to those deducible from the set of all plan schemata that could
achieve the given goals, any such overly restrictive plan class would have as a
superclass a plan class that includes only the necessary preconditions for the necessary
actions to achieve the goal effects.
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5.4.2 Plan Class Trees

This section presents examplez of the use of a tree of plan classes to
represent increasingly more specific planning solutions to achieve a given goal. The
preconditions of a plan class describe those facts that must be true about the situation
for the plans in that plan class to be applicable. The preconditions of a plan subclass,
then, are used to specify a relevant subset of the possible situations from the parent
plan class and the set of plans feasible in that restricted set of situations. Thus
restricting a plan class by adding an additional precondition produces a subset of the
original set, and this process is what is used to model the plan elaboration process.

I For example, imagine a belfry where the bolts holding the bells are rusted.
One bell has actually fallen, breaking through the center of the floor under the bells to
the floor below. Taken as a blocks world domain, the task is to use blocks and possibly
beams to support the remaining bell. This can be achieved either by building up blocks
straight from the floor below or by bridging the hole with a beam and building from
there. The initial plan class that represents all plans achieving the desired effect is
shown in Figure 5.8.

Plan-Class-Name: (support-bell ?bell)
Preconditions: {(bell ?bell)}
Add-List: ((supported ?bell)}

Figure 5.8: Plan Class for Support-Bell

(Assume that the supported predicate is in turn defined in terms of being on
something that is eventually on the ground.)

I We can define a plan class as in Figure 5.9 that is similar to support-bell, but
that adds the precondition (beam ?beam).

3 Plan-Class-Name: (support-bell-using-beam ?bell)
Free-Vars: (?beam}
Preconditions: {(bell ?bell),

(beam ?beam),
(available ?beam) }

Add-List: ((spans-hole ?beam), (supported ?bell)}

I Figure 5.9: Plan Class for Support-Bell-Using-Beam

It is clear that every plan included in support-bell-using-beam is also included in
support-bell, so that this new, more restricted plan class may be considered a plan
subclass of its parent. Because the effects and preconditions of a parent must also
apply to all the plan subclasses in its subtree, we can in fact describe this plan subclass
more succinctly as in Figure 5.10 by specifying only the additional restrictions, and
then including a pointer to its parent.

We can build a tree of plan classes in this way, defining a hierarchical
structure on the set of all plans that have the desired effects on the basis of the
situations to which they apply. Such a tree of plan classes can then be used to model

the process of plan elaboration by an agent who knows the plans initially but does not
know the facts of the current situation. The planning process begins at the unique plan
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Plan-Class-Name: (support-bell-using-beam ?bell)
Parent: (support-bell ?bell)
Free-Vars: {?beam}
Preconditions: ((beam ?beam), (available ?beam)}
Add-List: {(spans-hole ?beam))

Figure 5. 10: Plan Class Omitting Inherited Preconditions

class that specifies the desired effects and a null set of preconditions. As the agent
searches within that class for a concrete plan whose preconditions ae satisfied in the
current situation, it is the plan subclass structure of that class that the agent ends up
exploring.

While the total number of plan classes in reasonable domains is huge, being a
powerset of the powerset of actions, an actual system can only consider a limited
library of them. That collection of plan classes is a heuristic selection limited first to
the likely goals that arise in the domain, since there is no point in storing data about
plan classes for goals that agents do not actually pursue, and limited also to
preconditions that are relevant decision points in elaborating plans for those goals. For
example, in the ships domain, there are a number of plan classes defined whose
common effect is the change in location of a vessel from one place to another. These
plan classes could all be defined as subclasses of the plan class sail, shown in
Figure 5.11.

Plan-Class-Name: (sail ?ship ?from ?to)
Preconditions: ((vessel ?ship),

(position ?from),
(position ?to) }

Delete-List: {(location ?ship ?from)}
Add-List: ((location ?ship ?to)}

Figure 5.11: Plan Class for Sail

Subclasses within that class might be based on preconditions like the propulsion-type
of the vessel or the amount of fuel on board, as in Figure 5.12.

Plan-Class-Name: (sail-nuclear ?ship ?from ?to)
Parent-Class: (sail ?ship ?from ?to)
Preconditions: {(propulsion-type ?ship ?nuclear)}

Figure 5.12: Plan Subclass of Sail

As with plan schemata, the plan classes in the library are given plan class
headers, consisting of a unique name for the plan class combined with a list of
unbound, existentially quantified variable arguments, in which case the plans that
belong to the class are those that match its restrictions according to some substitution.
For example, (huild-3-touser ?X ?Y ?Z is the header of a plan class schema that
models the set of plans for stacking up whatever three blocks are supplied as its
arguments. One way to restrict such a pln class is by instantiating one of its
arguments to a particular value, so that (build-3-tower A ?Y ?Z) would describe that
subset of the former plan class in which block A ended up on top of the tower. (This is
equivalent to adding the precondition (= ?X A).)
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These plan class headers resemble an operator applied to arguments, and
indeed, while a Pragma metaplan tree is being built, this list of argument variables does
serve as a means for passing down from plan class to plan subclasses and subactions
the values that need to be instantiated for the desired effects to apply. Note that if the
variable list in the header does not include some of the entities affected by the plan,
their omission amounts to the adoption of a perspective on the plan viewing it in
relation to a goal that is only a subset of its total effects. The choice of which variables
to include in the header thus depends on the goals for which the plan class -is usually
considered. Unbound variables that do not appear in the plan class header are called
"free" variables (and are declared as such), implying the heuristic judgment that the
plan classes that make use of this plan class as a subplan or subaction will not care
what particular value is used to instantiate those variables. For example, the car in a
drive-car-to-repair-shop plan would usually be relevant at the higher level, so that a
plan class header for that plan would include a variable for the car, while the header for
take-taxi-to-airport typically would not bother specifying which car, even though the
effects of both plans do change the values of the car's location. Instead, the taxi would
be introduced as a free variable in the lower plan, thus becoming available for use in3 lower-level plan classes like enter-auto.

We can also constrain a plan class definition by adding an "actions" field to
the plan class specification that can take other plan class headers as values. The effect
is to embody in the higher-level plan class definition the effect and precondition
restrictions associated with the action header's plan class. For example,
sail-conventional might have a subclass sail-with-refueling as shown in Figure 5.13
that includes a refuel action as well as sail actions for the portions of the voyage before
and after the refueling, and which would also need to introduce a variable for the oiler
used in the refueling.

Plan-Class-Name: (sail-with-refueling ?ship ?from ?to)
Parent-Class: (sail-conventional ?ship ?from ?to)
Free-Vars: (?oiler ?rendez-voub}
Preconditions: ((oiler ?oiler),

(position ?rendez-vous) }
Actions: ((sail ?ship ?from ?rendez-vous),

(refuel ?ship ?oiler ?rendez-vous),
(sail ?ship ?rendez-vous ?to))

3 Figure 5.13: Subclass Introducing Subactions and New Variable

(Of course, a fuller model would include the current location of the oiler and its trip to
the rendez-vous.) Including actions in the plan class definition thus serves to restrict
the scope of the plan class in particular ways.

Note that the Pragma implementation of this plan class tree model substitutes
a type system with automatic inheritance for the explicit type assertions used in these
examples. In addition to computational efficiency, the type system is used as a rough
heuristic to mark classes of domain knowledge that the planning agent can be assumed
to know. While our picture of the planning situation assumes in general that the agent
does not know the values of the assertions defining the current state of the world, there
are still some levels of knowledge that we can assume. For example, in our ships
domain, we can assume that the agent would recognize that "Enteiprise" was a ship,
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and -30N-127W" a position, even though we would not expect her to know whether
or not the Enterprise was currently at that position. The plan class tree ideally should
include all the plans that the agent may believe to be possible given her world
knowledge, whether or not they are actually possible. Therefore, the only restriction
on plans in the initial plan class is that they be instantiations of some plan schema that
unifies with the desired goals, so that the set of possibilities depends only on the goals
and the plan definitions, which the agent does know. However, we do not want to
clutter the plan class tree with plans the agent knows are impossible. If type
knowledge is treated just like other preconditions that the agent may not know, then the
space of apparently plausible plans that must be considered grows tremendously,
including many nonsensical plans. Thus it is a useful first cut to treat the information
coded in the type system as assumed knowledge, while not presuming agent knowledge
of any other preconditions.

If this heuristic use of the type system to limit the space of possible plans that
must be considered is to work correctly, the type system must be defined to an
appropriate level. There is always a question of how detailed to make the types,
whether at the level, for example, of vessel, destroyer, or "Means class destroyer
located at position P with fuel level F". This heuristic will only be useful if that level
is set at a conservative estimate of the knowledge that can be assumed on the agent's
part, since the planner will not be able to represent the agent's consideration of
reasonable plans outside that space if the type system includes too much of the
semantics of the domain, and will represent many impossible solutions if it includes
too little. In Section 7.2.2, we will present an approach to a more detailed model of the
agent's world knowledge, and show how to make use of that model to help control plan
tree growth and thus the space of possible plans to be considered.

5.5 Plan Class Trees as a Plan-Building Model

In this section, we discuss why plan class trees are well-suited to the goal of
modeling the agent's plan-building process, comparing them to more traditional
models of plan context and showing how the differences are motivated by the goals of
the modeling in this case. The most important feature in a model of plan-building is
that partially-specified plans be easily represented to varying degrees of detail. This is
needed partly because the agent's actual state while working out a plan is to have a
partial specification of a plan for the task, with certain choices about strategy made and
others still open. The representation must be able to handle many such partially-
specified plans, as the agent considers different approaches. The second reason why a
partial specification mechanism is important is because the expert often has only partial
knowledge of the agent's plan-building process. The expert knows only what the agent
reveals through her queries or what the agent decides to directly tell her, to help her
build a good plan model, and that information is usually not enough for the expert to
deduce the agent's plan fully even to the extent that it is clear in the agent's own mind.
There again is reason why the representation needs to be able to handle partially-
specified plans, to represent the expert's partial knowledge of the agent's intentions.
The key advantage of plan classes and plan class trees is exactly that they do allow for
that kind of partial specification.

Not only do plan classes allow for partial specification of plans, the
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organization of the plan class hierarchy is also structured so that the subclass
relationships group together the sets of plans that are needed for representing plan-
building behavior. In planning in the STRIPS tradition, the purpose is to discover
combinations of actions that will achieve the given goal. One assumes that the actions
and world state are known, but the plans unknown, and tries to derive novel plans, so
that the plan-action structure is key. Any point within that search space is a complete
plan specification, though it may or may not be one that achieves the goals. In plan
recognition, the context is the opposite one of deducing, given a sequence of actions,
which plans the actor might be engaged in. It was for this purpose that Kautz
[33] worked out a plan-classification approach orthogonal to the traditional planning

tree of plans and included actions. This classification grouped together sets of plans
that contained the same action subsequences, and thus that belonged together as
possible explanations for those actions.

3 Modeling plan-building is yet a third use for plan networks. Like
recognition, it shares the need for representing ambiguity as sets of possible plans, but
in plan-building, that ambiguity is across sets of plans that achieve similar goals in
similar circumstances, rather than across sets of plans that happen to make use of the
same actions. In plan recognition, express-thanks and complain belong together as
plans that could include the action write-letter. In plan-building, the interesting set is
all ways of achieving the particular complain, perhaps including write-letter and
make-phone-call. Plan class hierarchies thus represent the structure most needed for
modeling plan-building.

I Like the plan recognition lattice, the full structure of plan classes is too large
to be computed in advance, but while plan recognition algorithms can work
incrementally, computing, given each new action, the appropriate plan subsets
explaining it along with the previous data, a plan-building model, because it works
downward from a defined overall goal, seems limited to exploring the space defined by
its library of plan classes, since deriving new plan classes would require computing the
effects of action sequences and picking criteria by which to subset the results. Still,
although the model seems limited to the stored classes, it has unique advantages in
terms of expressing the kinds of partial plan structures that can describe the plan-3 building process effectively.

In the actual pragmatic context model used in Pragma, domain plan classes,
meaning nodes in the hierarchy presented in this chapter that partially specify the
agent's current domain plan, serve as the plan arguments for the metaplans that are
used to model the agent's plan-building moves. Thus the *build-subplan* metaplan
will be seen to represent the selection by the agent of one of the possible subclasses of
the previously current plan class. The partial specification permitted by the plan class
representation allows a single plan class when used as a metaplan argument to3 represent a full plan context.

I
I
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U CHAPTER 6

NMETAPLANS TO MODEL THE PROBLEM-SOLVING CONTEXT

6.1 The Problem-Solving Context in the Expert Adising Setting

U In the previous chapter, we discussed the use of plans to model the agent's
domain-level intentions. But while the domain plan level captures a good deal ofIuseful information about the pragmatic context, there is a level of structure to the
agent's purposeful activity in the expert advising setting that it does not capture, which
we refer to here as the problem-solving level. In this chapter, we go on to present a
mechanism for modeling the agent's goals and plans on the problem-solving level. It is
this level that will allow us to model the connections between the underlying domain
plan being developed and the agent's observable behavior, and thus to be able to use
predictions of likely next steps to suggest corrections for ill-formed inputs.

Consider, then, an agent involved in a complex task that requires selection of
a plan strategy, a possibly-novel combination of known subplans. Because the task is
too complex for any single stored plan, the agent does not have a canned plan already
worked out for dealing with the situation. Instead, she has to design the plan as she
goes, and this planning task is logically separate from the domain level tasks that are
required in order to achieve the goal. That planning task includes activities like:

* constructing composite plans from known subplans for goals where no
complete plan is known in advance,

* testing the feasibility of possible partial plans by seeing if their
preconditions are satisfied in the current situation, or if other plans exist
that could cause them to be satisfied,

performing actions whose goal is to learn facts that will contribute to the
plan building process, such as working out the results of particular
compound plans or asking about the value of unknown environmental
features that affect the preconditions, and

* comparing the effects of alternative feasible plans to choose the most
desirable.

It is easy to see that that kind of plan-building activity is not captured by domain-level
plans, since it often requires representing multiple alternative domain plan structures
and modeling operations on them.

As explained below in Section 6.2.3, various researchers have proposed
models that do allow representing this plan-building level in one way or another.
Wilensky [591, in particular, developed a detailed model of plan building phrased as
metaplans, turning the now traditional mechanism of plans, goals, and preconditions to
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this new task of representing the agent's actions on this plan-building level, rather than
on the domain level. This new level of planning is termed "metaplanning" because
these plans have arguments whose values are complete domain plan structures. For
example, Wilensky's metaplans included plans for comparing or combining different
domain plans or for simulating (deducing in an abstract model) the effects of a
proposed domain plan to determine its feasibility.

In this sectioti, we propose a metaplan model that builds in many ways on
Wilensky's and othef earlier work, but that is designed particularly for representing the
pragmatic context in the expert advising setting. The model will be specialized in that
it will try to focus on the elements of problem-solving context that can be deduced in
such situations from the agent's observed behavior, and ignore Llements that are not
normally evident and thus would usually have to be left ambiguous anyway. We will
show how this problem-solving metaplan model allows us not only to model an agent's
given state in an expert advising context, but also to predict from a given state the
space of succeeding problem-solving actions that are consistent with the model, and
even to judge heuristically which succeeding actions are most likely in the sense of
being most closely related to the previous context.

The expert advising setting is in some ways different from most contexts that
involve problem-solving behavior, since the agent's problem-solving activity is
isolated in this setting, while it usually occurs interleaved with the actions represented
by the domain plans, as when an agent realizes that while there are many different
orders in which to arrange the errands on a shopping trip, they all begin with finding
the car keys and going to and starting the car, and thus begins to perform those domain
actions in parallel with the further plan-building activity required to determine a
satisfactory order for the remainder of the steps in the plan. Indeed, this interleaving of
metaplanning and domain planning is itself a metaplan strategy for increased
efficiency, since the activities can then often be carried out in parallel. Thus, a
complete model for purposeful action would need to be able to represent such
interleaving of metaplans and domain plans, the effects that motivate it and the
strategies used to achieve it.

However, the discourse setting of expert advising has the effect of
eliminating this interleaving. During consultations of the sort that we are modeling.
domain level action has been suspended, so that the domain planning state can be taken
to be fixed. Thus the agent's current actions during the consultation are concerned
only with the plan-building activities of gathering information and creating the plan
that will later be executed. This has the dual effect of simplifying the modeling for
domain level plans, since conditions can be assumed not to change and since there is
thus no need to represent the state of execution of the domain plans or to update one's
world model due to changes brought about by them, and of increasing the importance
of the problem-solving metalevel, since that is the level at which the agent's attention
is currently solely focused, as she builds possible plan structures, tests them for
feasibility, and compares their effects. Thus the expert advising setting not only
requires modeling of the agent's problem-solving behavior on the metaplan level, but
also naturally draws attention to that level as the primary focus for the agent and thus
for the system at this point.

That process of plan building for problem solving on the agent's part is the
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subject of this section. It is an important part of this thesis to show the advantages of
modeling that process explicitly, just as the agent's domain plans and goals are
modeled explicitly. This explicit model of the problem-solving level allows the system
to track the agent's metalevel approach to plan building, and thus enables more
accurate predictions about the next steps the agent is likely to take in building the plan
than a model that represents only the domain plan level.

6.2 Existing Models of the Problem-Soling Context

In this section, we examine existing approaches for dealing with the
problem-solving context in expert advising discourse, some approaches that work
directly from the domain plans, some that use other structures parallel to the domain
plan tree for tracking the discourse context, and finally some that have used metaplans
in a way similar to that proposed here to capture particular features of discourse
structure.

6.2.1 Working Directly from the Domain Plan Tree

The original users of plan tree models for cooperative responses relied
primarily on the domain plan tree as their context model. Information about the
patterns of the agent's movements in that tree and about the connection between nodes
of that tree and the agent's queries were directly implemented in the system's code for
exploring the tree and selecting what nodes would match which queries. No separate
structures were maintained to model metalevel context or its implications for the

derivation of queries from the domain plan nodes.

Thus, in Allen and Perrault's [2] system, plan inference rules were used to
derive from a given query the domain plan that was its likely motivation, in that case,
meeting or boarding a train. The system then extracted from its knowledge of that
domain plan the obstacles like not knowing the gate at which the train was scheduled to
arrive that might be preventing the agent from executing the plan, and generated
helpful responses by supplying that data to the agent. The processing in their
approach, then, went from the query to inferring a branch of the plan tree to deriving
obstacles and formulating the response. Since there was no prediction from one query
to the next, they did not model possible next moves in the plan tree or predict fromIuch moves likely foiio;.,-on Luerie. -11e onty inovenient in the tree considered was
the search of the subplans of the selected branch for the identification of obstacles.
Since their agents were assumed to be pursuing a single plan, there was no need to
represent consideration of multiple alternative plans for comparison or choosing
between them. Thus the domain plan tree itself provided an adequate context model
for their purposes.

Carberry [101 later expanded the range of this domain-plan-based approach
in various ways. Building on the work of Grosz [221, Robinson [45, 46], Sidner [501,
and others who had studied more extended plan-based models to represent the task
structure of discourse in order to help identify discourse focus, resolve anaphora, and
distinguish intended from unintended responses, Carberry developed a mechanism that,
like Allen's, deduced a plan context from a single query, but, unlike his, then
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maintained that context and tracked the agent's progress through the plan during the
ensuing dialogue. Her system included a substantial body of heuristic rules that
predicted the most likely movements in the plan tree, rules that guided the search for
the related node assumed to be motivating a follow-on query. That ability to carry the
context model between queries allowed her to make use of it to handle cases of
pragmatic ill-formedness and intersentential ellipsis, both examples where the
interpretation of the current query depends on information available only from context.
Her basic representation for pragmatic context remained nodes in a domain plan tree,
although she also enriched her context model to handle discourse features, as we will
see in the next section.

6.2.2 Discourse Models for Problem-Solving Dialogue

Researchers in discourse have suggested various structures for representing
pragmatic context which could also be applied to problem-solving dialogue in the
expert advising setting. Grosz and Sidner [241 have outlined in their theory an
important classification of the kinds of discourse structure that need to be modeled. In
their model, the three kinds of structure are the linguistic structure, the intentional
structure, and the attentional state, where the linguistic structure is the obvious one of
sentences, interchanges, and paragraphs, affected by clue words like first and finally,
the intentional structure refers to the public purposes motivating the speakers, and the
attentional state describes the current focus of the discourse and mediates reference
issues. They model the attentional state as a stack of focus spaces which can be pushed
or popped based on changes in the linguistic and intentional structures, while the
intentional structure is modeled by the purposes assigned to each discourse segment
along with other purposes which may dominate it or depend on it. In their terms, the
domain plan trees that others have used to model pragmatic context are particularly
well-organized examples of intentional structure, which is why they arise in task
dialogues or problem-solving contexts, where the discourse is closely tied to the tree-
like intentional structure of a single task. It is only in that restricted class of domain
that the plan tree itself can serve as an adequate model for the intentional structure.

We see in Carberry's [101 work also signs of this stretching of the domain
plan tree model in order to be able to capture and predict other sorts of utterance than
direct queries about plan preconditions. She maintained in addition to the plan tree a
stack of discourse purposes, and that stack combined with the plan context to predict
possible utterances. For example, the stack kept track when the previous move had
been a question asked by the system, and could predict the agent's possible responses
like answering the question or seeking clarification. The context maintained by this
discourse stack was used to help analyze the various roles that elliptical utterances can
play based on their discourse context. Thus she was able to predict elliptical responses
like express-surprise-at-question when the agent responds indirectly to a question
from the system:

System: Do you want to take CIS 200 at 8.00 M-W?
Agent: At 8:00?

Thus while Carberry's model of intentional structure was still a domain plan tree, her
additions to the model allowed her to capture other features of the discourse context
and thus to predict more complex kinds of interaction than the plan tree itself could
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i support.

The pragmatic model presented here also goes beyond the plain domain p ,in
tree approach, but rather than expanding the discourse coverage, the focus here is on3 higher levels within the intentional structure. We assume here that the expert advising
setting is one where the intentional structure of the discourse is closely enough tied to
the plans involved in achieving a single goal that a task structure based on that goal can
be an adequate model of the intentional structure. We also limit ourselves in" this work
to that subse of discourse in this setting involving direct queries from the agent for
information, so that the effects of the attentional state and discourse structure will
follow the intentional structure closely enough that no separate model will be needed.
The new focus in this work, then, comes within the model of the intentional structure,
in expanding the model based on domain plans to one that can capture and predict the
different problem-solving structures that agents may employ in refining and
instantiating a plan for a given goal. A full NL understanding system for expert
advising would naturally require both the richer discourse model pointed to by
Carberry and by Grosz and Sidner and the model of the problem-solving intentional
structure of discourse in that setting presented here.

3 n6.2.3 Uses of Metaplans in Pragmatic Modeling

There have also been earlier efforts to capture either problem-solving
structure or discourse structure by using metaplans. In this section, we compare these
uses of metaplans with the version proposed here.

Wilensky [59] has presented a very extensive model for a wide range of
purposeful activity in terms of many layers of interacting metaplans, built on top of the
layer of domain plans. He assumes that the agent has access to a library of canned
plans for many situations, and that many goals are achievable by using those prestored
plans, a strategy encoded in his use-normal-plan metaplan. Novel situations may
arise, however, requiring other metaplan approaches, like change-circumstance,
which tries to modify the situation so that a standard plan will apply, or simulate-and-
select, which simulates the effects of possible sequences of actions in order to work out
an appropriate plan. Adjusting to handle plan interactions is also modeled here by
metaplans, so that the merge-plans metaplan tries to combine groups of domain plans
that can be performed more efficiently together, while try-alternative-plan describes
one possible response when two plans end up colliding, trying to replace one of the
plans with a different plan for the same goal that does not collide. His model is,
altogether, an impressive formulation of the logic of plan building in terms of
metaplans.

The metaplan model presented here is in many ways an application and
development of Wilensky-style metaplanning focused on the incremental refinement
and instantiation sort of plan building typical of agents in the expert advising setting.
The two main differences between Wilensky's model and the metaplans used here are
in the sort of planning captured and the number of layers of metaplanniny allowed.
First, then, while Wilensky does model many of the activities that are incl Jed in our
problem-solving domain, the primary focus in his work is on the effects of plans and
interactions between plans as they are assembled into larger structures. In the approach
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taken here, by contrast, because the arguments to the metaplans here are plan classes
rather than individual ground plans, the primary focus is on the substructure of the
plans, and the gradual refinement of the plan class into a particular plan. The
elaboration of the query metaplans in this model also represents a different kind of
application of them than found in Wilensky. Second, the comparative simplicity of the
metaplan structure in the expert advising setting, since the agent is known to be
pursuing expansion and implementation of a single goal via non-interacting plans, has
allowed the current model to be implemented using a single level of metaplanning, so
that the actual context tree nodes contain metaplans whose arguments are directly
domain plans, rather than allowing the deeper recursion of Wilensky's model, where
metaplanning could continue to an arbitrary number of levels.

Other researchers have used less ambitious versions of metaplan models in a
way more focused on modeling discourse structure. Mann, Moore, and Levin's early
work on dialogue games [36] can even be seen as one type of metaplan, a plan-like
structure for the discourse which included roles filled by the domain plans.

A more recent use of metaplans to model discourse structure is Litman's
work [35]. She used metaplans like introduce-plan, continue-plan, arid modify-plan
to organize the plan tracking process during a dialogue. For instance, in her analysis of
the editing dialogue in Figure 6.1,

User: Make a subc [subconcept] of Pastime called Sport.
System: OK.
User: Make an iconcept [individualized concept] of Sport called Golf.
System: OK.
User: Is there a concept called mailing-address or something like that?
System: There is no concept "mailing-address".

What do you mean by "or something like that?"

Figure 6.1: Example Dialogue from Litman

the question about a mailing-address concept is an example of introduce-plan that
begins a clarification subdialogue, interrupting the continuing editing plan context.
That subdialogue is in turn interrupted when the system's introduce-plan requests a
clarification of the clarification. Each of these metaplan-modeled discourse operations
like introduce-plan can create a new context centered around a different domain plan.
Litman thus uses a small collection of metaplans to manage a stack-like discourse
context representation that does an effective job of capturing the stack-like structure of
such clarification dialogues.

The main differences between Litman's work and the approach taken here
are again due to which features of the pragmatic organization are being modeled in the
metaplans. For clarification subdialogue structure, she uses a small set of fully-
recursive metaplans that may introduce domain plan contexts unrelated to the
previously prevailing one, while to represent the problem-solving structure in the
expert advising setting, we here use a larger collection of non-recursive metaplans
which can each change the focus in the domain plan tree by at most a single link.

Another contrast between Litman's style of metaplan model and the one
presented here is that her metaplans are used to manage multiple unrelated domain
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contexts, while in our use of metaplanning, which depends on one tree for the entire
context, separate contexts can only be handled if they can be recognized as sibling
portions of metaplan tree structure with a common metaplanning ancestor. In general,
changes of context that imply little relationship are not modeled well by our version of
metaplans, like the new context introduced into a phone conversation when the child of
one participant starts tossing a baseball around the living room, which can become a
new context for queries in the conversation but is not related in any meaningful way to
the previous context. The single-tree method is useful for modeling in greater detail
and with more predictive power that portion of an interaction that is directed toward a
single domain goal, which then serves as the root of the metaplanning tree, but it does
not capture the stack-like discipline that can govern interruptions.

6.3 Overviewy of a Metaplan Model

3 Building on this earlier work using metaplans, we consider here how to
model the problem-solving level of an expert advising interaction in those terms. This
section describes the structure of the metaplan tree including the relationship between
the metaplans and their domain plan arguments, and introduces the four classes into
which the metaplans are grouped. The following sections will then describe the
metaplans of each group in detail.

6.3.1 The Metaplan Context Tree

In order to model the possible problem-solving behaviors of agents pursuing
goals in an expert advising setting, we propose embedding the domain plan classes that
represent the decomposition structure of possible plans as arguments in a tree of
metaplans that capture both the plan refining and variable instantiating moves open to
the agent and also the different queries that might be motivated by consideration of
those moves. These problem-solving [PS] metaplans are formulated in a style similar
to the domain plans, except that their actions refer to metaplanning operations that the
agent employs in constructing a plan to achieve the domain goal, operations like
choosing a subplan or instantiating a plan variable, and their precondition predicates
are facts about the domain plans like (sub-action-of replace-ship-plan sail-action)
rather than facts from the database representing the state of events in the world.

The same theoretical classification structure described for the domain plans
in Chapter 5 also applies to the metaplans, although because the role of the metaplans
in the model is different, less use is made of that structure with metaplans than with
domain plans. With domain plans, the plan class in a context represents the agent's
partially-specified plan at its current level of refinement, while at the metaplan level, a
current context in the discourse is always represented by the fully-specified metaplan, a
leaf of the metaplan class tree, that matches or links with the current query. Thus while
the class structure of the metaplans is used to define the internal structure of the tree
and thus the space of possible metaplanning moves that is searched, any particular
move by the agent maps to a fully-specified metaplan, though the arguments to that
metaplan may involve a domain plan class that is only partially specified.

By convention, the PS plan nodes carry information about the domain plan
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context using two distinguished arguments in each PS plan header, the first containing
the name of the domain plan class being considered by that PS plan class and the
second the list of arguments to that domain plan class. A n'etaplan like
*build-subplan* can thus model the consideration by the agent of a subset of the
current plan class by using in its subcalls the domain plan and argument values for a
subclass of the plan class whose header was passed in as its first argument, while a
metaplan like *add-boolean-constraint* that does not involve a change in domain
plan context just passes to its children the same context arguments it received. 'For
convenience, this context mechanism is also carried through metaplans like query plans
that are leaves of the metaplan tree, so that it is possible from any node in the metaplan
tree to access the relevant domain plan context.

The metaplan tree form offers many advantages as a model of problem-
solving context. First and most important, it allows the representation of multiple
possible domain plan classes for the same goal, for modeling contexts where the agent
is in the process of comparing different possible solutions. The different plan
subclasses of a single plan class, for example, become siblings in the metaplan tree.
Second, the metaplan tree allows a unified representational form to capture both moves
that further refine or specify the domain plan structure under consideration and moves
that request data or that inform the expert about the agent's plans without modifying
them. This single representational form makes it possible to apply a uniform style of
heuristic rules to control search in the tree for related contexts. Third, the metaplan
tree can represent a particular problem-solving context, information that goes beyond
the domain plan context, but in a way that is integrated with the domain plan model,
instead of requiring a separate structure cross-indexed to it. For example, the metaplan
context can reveal whether the agent's current purpose in exploring this branch of the
domain plan tree is to determine its feasibility or to evaluate its cost, which is an
important distinction because the kinds of queries predicted in the two contexts are
different. This kind of metaplan tree where each metaplan node references the domain
plan context seems the simplest pragmatic modeling structure offering these
advantages.

6.3.2 Four Classes of Metaplans

The PS metaplans fill four main functions in the model, each of which is
implemented by a class of related metaplans:

" they outline the agent's exploration of domain plan subclasses and
subactions and her variable instantiation moves that are part of searching
for and refining a feasible plan for the goal,

" they predict what queries might be motivated by the exploration of
different plan possibilities,

" they model alternative exploration patterrs of the domain plan space that
are based on evaluating relative cost rather than determining feasibility,
and

* they allow for instances where the agent chooses to directly inform the
expert about the plan path being explored, in order to establish the proper
context for queries that might otherwise be misleading.
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Metaplans of the class that model the agent's search for and refining of a
feasible plan for the goal are called plan-building plans. The class of plan-building
metaplans includes some that model the elaboration of the basic domain plan
possibilities for the overall goal in terms of subplans and subactions, and others that
model plan-building moves that instantiate open variables within the domain plans.
These plan-building metaplans thus form a backbone for the metaplan tree in terms of
the subplans, subactions, and variables of the domain plan classes; the current domain
plan context at any node can be derived from the plan-building ancestors of that node,
which give both the subplan class restrictions and the variable instantiations that
characterize the current plan for the node.

In addition to the actual plan-building moves, the problem-solving agent also
performs actions directed toward gaining the knowledge needed to choose between
domain plan possibilities or to determine their likelihood of success. In Wilensky's
terms, plan feasibility tests of this sort were part of his simulate-plan metaplan,
determining whether those actions, if perforned, would achieve the desired result.
That dtermination is modeled here, of course, as a question about a precondition of
the plan. The metaplans in this class are called the query plans, and the queries they
model are the primary observable behavior in this discourse setting.

A third class of metaplats are evaluative in nature, and have to do withI comparing the costs and benefits of different plans. These metaplans model a different
kind of exploration 'f the same space of subplans and subactions from that modeled by
the plan-building metaplans.

Finally, there is also a class of metaplans that model problem-solving actions
on the agent's part that do not have any direct effect on the intended plan or on the
agent's own knowledge, but that serve to inform the expert to whom the queries are
directed of some fact about the agent's plan-building activity that the agent supposes
the expert would not be able to discern from the sequence of queries alone, but that it is
important that the expert should know in order for her to be able to track the agent's
plan-building correctly and thus be as cooperative as possible. The info:ming, metaplans model these explanatory actions on the agent's part.

6.4 The Plan-Building Metaplans

In this section, we describe those metaplans that the agent uses to refine and
instantiate the domain plan structure that serves as the proposed solution to the
problem. In our planning model, the elaboration of a plan for a given goal can be
divided into two classes of tasks, first selection of one of the possible subplans at each
node where there are multiple options, and second the instantiation of the open slots in
the plans to values from the domain that satisfy the preconditiois of the plan tree. We
will likewise consider two different classes of plan-building metaplans, those that
select from among the alternative plans at each choice point, and those involved in
finding fillers for the variable slots in the plan tree.

Note that while the agent's aim is to construct a tree of plans and subactions
with a single instance selected from the plan class for each goal, the development of
that tree proceeds by exploration of alternatives, so that the metaplan tree m.odel of the
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agent's problem-solving process often has multiple active subplais for a single goal
and multiple subtrees beneath a given goal exploring various instantiations for the
variables. These plan-building metaplans can have the effect, therefore, either of
creating initial subtrees to meet given goals or of adding additional subtrees to ones
already considered to explore further alternatives, using either other subplans or
alternative variable instantiations.

Note that while the refined and instantiated domain plan resulting from these
plan-building metaplans is central to the agent's problem-solving goals, the actual
choices modeled by these metaplans must usually be inferred by the expert from the
queries asked, rather than being explicitly communicated. For example, a student does
not usually say

I'm a B.S. student, CIS major, considering earning credit in CIS 360 this
semester to help satisfy my core requirements for the degree. Is there
space available?

Instead of describing in that way each of the plan-building choices involved in
specifying the plan, the agent in an expert advising setting simply asks the query

Is there space in CIS 360?

expecting the expert to be able to supply from the query and from context a sufficient
model of the motivating plan to enable helpful responses. In those cases where the
agent expects that the expert will not be able to infer the plan correctly, she can use
explicit inform statements to fill in the plan-buildint context, as we will see in
Section 6.7, but that context is typically derived from the agent's query behavior.
Thus, while these plan-building metaplans are at the heart of the agent's effort, they are
seldom the explicit target of communication from agent to expert. Instead, they are
deduced by the expert as having been executed by the agent when the agent goes on to
perfonn some more explicit behavior based on the plan exploration embodied in the
plan-building actions.

6.4.1 \letaplans that Outline the Domain Tree

One class of plan-building metaplans are those that model the refinement of
the domain plan tree of subplans and subactions. As that process is formulated here,
there are three such plans, one called *build-plan* that effectively encodes the domain
plan nodes themselves, and two more, *build-subplan* and *build-suhaction*, that
encode the links between nodes in the domain Plan tree.

6.4.1.1 Build-Plan

This metaplan is the basic metaplan class encoding all the agent's problem-
solving activity to build a domain plan for a particular goal, that goal being expressed
by the header of tha" class of domain-level plans that share the given goal as one of
their effects. All the rest of the metaplans considered here are subplans and actions of
this *bild-plan* metaplan, containing in more detail the various problem-solving
appro.ches which the agent can use to achieve the goal of the *build-plan*, which is
to have a fully refined and instantiated plan of domain actions that will achieve the

56



I
Report No. 7047 BBN Systems and Technologies Corporation

desired domain goal.

To specify an instance of the *build-plan* metaplan, one must specify the
domain goal for which the agent desires to create a plan. Given the structure of domain
plans and plan classes, where a domain plan class represents all of the domain plans
that share a given set of effects, such domain plan classes serve as a natural encoding
for the domain goals that are the focus of the plan-building activity captured in the
*build-plan* mecaplan. Therefore, the arguments to *build-plan* include the domain

plan header of the given domain plan class and whatever argument values are needed
to instantiate its input variables and thus determine the problem toward which the plan
building will be addresse,

For example, in the naval domain, suppose that one vessel in a particular
battle group has experienced a breakdown that puts it out of action, and that the agent's
domain goal is to restore the functionality (or "readiness" in Navy terms) of that battle
group. On the domain plan level, there is a domain plan class for plans that achieve the
goal, whose header is shown in Figure 6.2.

(increase-battle-group-readiness
?battle- group
?old-rdy
?new-rdy)

Figure 6.2: Plan Class Header for Increase-Readiness

In the metaplan tree, a *build-plan* node representing the class of problem-solving
metaplans that can be used to build a plan for that goal could be expressed as in

* Figure 6.3.

(build-plan
plan-header (increase-battle-group-readiness

?battle-group ?old-rdy ?new-rdy)
arg-values (?battle-group ENTERPRISE-GROUP

?old-rdy C3
?new-rdy Cl))

Figure 6.3: *Build Plan* Node for Increase-Readiness

3 As mentioned before, the arguments to metaplans like this *build-plan* include the
plan header and argument values for the domain plan class being considered. The
metaplan action and subplan children of this node describe the problem-solving actions
that the agent could pursue in order to further specify which domain plan subclasses
the agent intends to select and to specify plans for the actions required in those plan
classes or to achieve their preconditions.

I While the metaplan context includes a full specification for the domain plan
class that is the goal,. it does not contain a full description of the world state in which
the plan will have to function. While one could have included a world-state argument
with the metaplans, we have chosen to allow that information to be present implicitly
through the world model, since we are assuming that the world model in this setting is
stable, given that the agent is currently building plans for future execution and that
those plans are non-interacting. Like the world state, another important factor in the
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expansion of a *build-plan* tree that is not included in the argument list is a model of
the extent of the agent's knowledge about thee current situation, since many of the
plan-building actions have to do with gathering pieces of information about the world
context and applying them to me choice of how to extend the domain plan tree to meet
the desired goals. We discuss in Section 7.2.2 how the influence of the agent's world
knowledge can be modeled as part of the heuristic component that governs plan tree
growth.

6.4.1.2 Build-Subplan

One subset of the set of possible metaplans modeled by a *build-plan* node
can be formed by restricting the domain plan class to one of the particular domain plan
subclasses of that plan class. For example, underneath increase-battle-group-
readiness we might have domain plan subclasses for add-ship-to-group, replace-
damaged-ship, and repair-damaged-ship. Each such domain plan subclass could
serve as the basis for a *build-subplan* metaplan, modeling the agent's intention to
explore a plan for the goal that falls within the classification of that particular subplan.
A *build-subplan* node thus represents a choice by the agent at least temporarily to
focus the space of plans being explored to those that fit within the chosen subplan
classification.

The arguments of *build-subplan* include both the specification of the
higher-level domain plan class and its arguments that is standard for all the metaplans
and the header of the particular domain plan subclass that this instance of *build-
subplan* selects. In the current model, the only direct subplan of *build-subplan*, in
turn, is a *build-plan* node for that domain subplan, with its argument values updated
properly to represent the situation of that subplan in the given plan context. However,
one extension that was considered during development was a richer set of metaplans
encoding the various means the agent might use to select one particular subplan class.
For example, *use-defau!t-suhplan* might be a more specific version of *build-
subplan* that woula apply in cases where one of the domain plan subclasses is used
much more frequently than others. In Pragma, that distinction about typical usage
patterns for plan subclasses was included eventually in the heuristic component, rather
than as a separate metaplan.

6.4.1.3 Build-Subaction

In the same way, the agent may choose to explore the plans that would be
required to fulfill one of the subactions of the domain plan class referenced by the
parent *build-plan* node. Remember that the subactions attached to a plan class are
those belonging to all the members of the class, so that achieving the goal by means of
any plan in the class will require also selecting a feasible plan for the subaction, and the
*build-subaction* metaplan models the problem-solving step of beginning
consideration of that issue. For example, every plan in the earn-credit-in-course class
might include a pay-semester-bill action, so that that action would be attached at that
level of the plan class hierarchy. Then one of the problem-solving steps open to an
agent pursuing a *build-plan* for (earn-credit-in-course CIS360 89-A) would be a
*build-subaction* foi pay-seniester-bill which would in turn spawn a *build-plan*
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for that plan class that might in turn be expanded by *build-subplan* into the3alternatives pay-cashier and mail-check.

As with *build.subplan*, the arguments to *build-subaction* include both
the domain plan class header and argument values inherited from the parent

II *build-plan* and also the header specifying which subaction of that plan class is to be
explored.

Given just the three plan-building metaplans presented so far, we can see that
there will be a one-to-one correspondence between the skeleton of a metaplan tree
based on just these plan-building metaplans and the domain plan tree that could have
been built directly from the domain plans with their subplans and actions. The main
advantage of modeling this structure by means of plan-building metaplans is that they
form a foundation for attaching the metaplans that model the other classes of problem-
solving steps. They also establish a base for further expansion in that the plan-building
metaplans themselves can be further refined, as pointed out in the previous section
about *build-subplan*.

I 6.4.2 Metaplans that Fill Variables

3 In order to achieve a fully-specified plan for the domain goal, the agent needs
not only to select plans for the subplans and actions, but also to instantiate any open
variables in those plans to actual entities in the world model that fulfill the
preconditions of those plans. This is because even a full choice of subplans and actions
does not specify a unique plan, but only a template that still requires the instantiation of
its variables to specific values in order to produce a complete plan. The metaplans in

I this section capture this process of selecting values to fill the variable slots in the plans.

1 6.4.2.1 [nstantiate-Var

The *instantiate-var* metaplan describes the problem-solving step of
binding an open variable within a domain plan to a particular value. For example, in
the naval domain, the plan for replacing one ship by another introduces a variable,
?rship, standing for the ship to be used as the replacement. The effect of an
*instantiate-var* metaplan would be to create a context in which that variable was
bound to the proposed value. If the agent asks how long it would take the Fox, say, to
reach the station of the damaged Sterett, the expert recognizes that the agent is

considering the possibility of replacing the Sterett with the Fox, which is modeled here
by an instance of ,ie *instantiate-, ar* metaplan appearing beneath the *build-plan*
for replace-ship. The effect of *instantiate-%ar* is to create a new, alternative
context in which the chosen variable is bound to that give-, value. Just as
*build-subplan* can model consideration of various different plan subclasses,

*instantiate-% ar* also does not cut off consideration of alternative plans. The
metaplan context is powerful enough for parallel domain plan contexts to be explored

* in parallel.

The occurrence of an *instantiate-var*, like that of *build-subplan* and
the other plan-building metaplans, is not usually expressed directly in the dialogue, but
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is observed indirectly by deducing the metaplan steps that could motivate the observed
query behavior. The expert goes through a process of deducing the metaplan moves
necessary to create the context from which the query could be asked. Thus, in the
above example, the query implies the existence of some context that would motivate a
query about the distance from the Fox to the Sterett, and the expert is able to deduce
given the previous context and knowledge of the domain plan possibilities the
implication that the agent is considering a replace-ship plan with the Fox as the
?rship. This process of deduction, from a given context and query, of the possible
metaplan contexts that could have motivated the query is central to being able to
maintain and make use of such models.

*[nstantiate-var* is a metaplan class with some useful subclass structure

which models particular kinds of variable instantiation that the Pragma model wishes
to distinguish. There are subclasses of *instantiate-%ar* that can be used when it is
clear why the agent has chosen a particular instantiation, for instance, if there is only
one value possible, or if the value chosen is one included in the agent's query. For
example, *choose-only-possible* is a subclass of *instantiate-var* that applies when
only one of the choices to fill a slot causes the preconditions of the plan to be satisfied.
Two other subclasses of *instantiate-var*, *pick- value.su ggested* and *pick-at-
random*, distinguish in the search for a match to a query whether the possible
instantiation value was mentioned in 'he query or not; the case where a particular value
is suggested can be heuristically favored, since it does not expand the tree as greatly as
the random version that builds instantiation nodes for every possible entity of the given
class.

Subclasses like *choose-oni-possible* tell us more about the agent's choice
process and it's motivation, which can be useful heuristically in predicting the likely
future course of the dialogue. However, there is frequently no data for more exact
predictions of this sort, especially because modeling the reasons for the agent's choice
of particular values can depend on more knowledge about the agent's beliefs than is
available in the expert advising setting. For example, a student who needs one more
elective in the sciences to fulfill the distribution requirements might ask about the
meeting time of BIO-1 10. While that question does enable us to conclude that the
agent is considering enrolling in that course, and thus that the agent's domain plan tree
has been extended by instantiating the variable ?course in the earn-credit plan to
BIO-l 10, we do not have enough data to determine whether this variable instantiating
metaplanning step in this case resulted from, say, knowledge that that was the only
course whose schedule natched the available time slots, or whether the student was
following up the recommendation of a friend, or whatever in this case made the agent
choose that particular value. Thus *instantiate-%ar* by itself encodes only the plain
fact that the domain plan has been extended by the instantiation of that variable to that
value; the more precise characterizations in the metaplan subclasses of
*instantiate-% ar* are available for cases where sufficient information is available.
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6.4.2.2 Constrain-Var Plans in General

3While direct instantiation of an open variable to a particular value is the usual
approach, there are circumstances where agents make use of intermediate stages that
restrict the possible values without specifying any particular value, and these are
modeled by *constrain- var* metaplans. The effect of these metaplans is to restrict the
space of possibilities from which a value for the variable must be chosen. Examples of
such restrictions include those underlying queries in the damaged ship context like

List the cruisers in the Indian Ocean.
| or

List the cruisers within 500 miles of Sterett.

where the space of candidates to be considered is restricted by the query. While the
restriction appears as part of the query, it is modeled as a metaplan step modifying the
actual partial plan under consideration, since the query reveals a narrowing of focus on
the agent's part at least for primary consideration of possible fillers.

The representation of these constraints depends on the introduction in
variable instantiation query contexts of a new variable standing for the set of possible
fillers of the open variable. A variable of this sort is generated in the metaplan tree at
the *build-plan* nodes for each free variable in domain plans that introduce them.
Wi.n ~such szt v.ariables occur in normal atomic formulas, the interpretation is that the
constraint of the formula is applied distributively to each member of the set, so that the
constraints applied to the free variable in the plan preconditions are applied in the
metaplan tree to the derived set variable and thus to each member of the possible fillers
set. An existing plan constraint like (readiness ?rship CI) then becomes (readiness
?rship-set CIl), encoding that each member of the set of possible fillers must be ui the
top readiness condition.

A single query can reveal the agent's application of a number of such
constraints on the set of possible fillers, as in the example

S List the unassigned C1 frigates.

This use of multiple *constrain-var* nodes on a single branch raises the danger of
duplicate b. iches in the metaplan tree that differ only in the order of application of
such a set of constraints; to avoid this, the system imposes an arbitrary (alphabetical)
order on such sequences of *constrain-var* nodes. Alternatively, the agent can add
further constraints to the set identified in a previous query, producing a sequence of
increasingly specific subsets like the following:

List the unassigned ships.
Which of them are frigates?
Which of those are Cl ?

For such examples, new branches that reflect the added constraints are sprouted from
the branch modeling the previous query.

Note that there are two classes of constraints that can be involved in3 *constrain-.ar* metaplans, either constraints that are already present as preconditions
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in the referenced domain plans or constraints that the agent adds on her own. Added
constraints that are not also preconditions must be either factors that the agent
independently knows will affect performance in the current circumstances, although
they are not required for plan success, or else restrictions that the agent has other
reasons for wishing to apply not derivable from the current plan context. An example
of the former would be where the agent restricts the set of replacement ships to be
considered from all frigates to frigates within 500 miles, supposing that there are some
within that range and that they will be able to get to the station more quickly, although
any frigate would be able to fill the slot successfully. An example of the latter would
be where the agent excludes frigates in the Indian Ocean from consideration because of
independent knowledge that there will soon be a mission there requiring them all, or
because she is also considering initiating an exercise for all the units in that area. In
the former case, the one we are mainly concerned with, while the system cannot predict
effectively the exact restriction the agent may use, it is possible for the system to
connect the restriction with preconditions in the plans, demonstrating its relevance.
Thus, while the pick of 500 miles is arbitrary, the distance between the replacement
ship and the damaged one can be seen in the plans to be relevant because it is the
distance which the replacement ship must cover in the sail subaction to take up its
station. However, there is no way for the system to judge the relevance of the latter
sort of added constraint, since that relevance depends on data known only to the agent;
the *constrain-var* metaplans still allow for such restrictions, but with a lower
heuristic ranking.

In theory, another unusual sort of constraint that must be allowed for is a
random one, where there is no motivation at all, not even a hidden one, for the specific
restriction except that it will serve to cut a large candidate set down to a size that is
more efficient to pick from. For example, if someone advertised a position on the help
wanted pages and received hundreds of responses, a reasonable strategy might be to
select one tenth of the candidates at random, making it possible to read the applications
in a reasonable time while still leaving a large enough pool to choose from
intelligently. This unusual sort of restriction would naturally also be one which the
system could not connect to the plan preconditions.

This ability of *constrain-%ar* metaplans to add unrelated constraints to the
tree context creates a danger of unintentional matches. The heuristic weight given to
the addition of such novel constraints must be severely limited to prevent queries from
linking to nodes from locations in the tree that are completely unrelated to the real plan
context, merely by building a sequence of *constrain-var* nodes that end up matching
the entire query. In order to prevent such false matches, it is important to direct the
search so that any natural match to a relevant section of the tree is found before a
match that requires addition of one or more novel constraints. We will see later how
heuristics based on factors like the importance of the constr- nt to the task, the size of
the unconstrained set, the predicted likelihood of members of the unconstrained set
meeting the constraint, and the likelihood of the agent knowing already whether
members of the set meet the const, a'int can be used to control the addition of these
variable-constraining metaplans and thus to focus the se urch on the more likely
derivations.
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6.4.2.3 Add-Boolean-Constraint

IThe actual metaplans for adding constraints are separated into plans for
adding boolean constraints and for adding scalar constraints, since the form and
heuristics governing the two are somewhat different. Adding boolean constraints is
one way of dealing with underconstrained variable choices, where there are a large
number of possible fillers, by adding explicit constraints to those implied by the plan
context itself. Using a naval example again, the agent may ask for a list of the fast
frigates (a separate subclass) when the vessel needed for replacing the damaged one
according to the plan constraints could be any sort of frigate. Asking for a list of
frigates within 500 miles of Sterett would also be classed as a boolean constraint,
although more than one atomic sentence is used to express that constraint, as in
Figure 6.4.

(distance-between ?damaged-ship-loc ?rship-loc ?dist)
(<= ?dist 500)

Figure 6.4: A Multiple-Assertion Constraint

The *add-boolean-constraint* metaplan takes only the normal plan context
arguments, since the constraint being applied appears as a free variable of this
metaplan. The algorithm for searching the tree ensures that *add- boolean-constraint*
nodes are only built for constraints that do appear in the query, and the heuristics try to
ensure that related plan contexts in which the constraint already appears as a
precondition will be found in the search before contexts to which it has been added by
this metaplan.

3 6.4.2.4 Add-Scalar-Constraint

*Add-scalar-constraint* is a metaplan that restricts the fillers of a set to
those that maximize or minimize the value of a particular scalar function, or that fall
within a given percentile on that function when compared to all the possible
candidates. This metaplan specifies both the function to be maximized and the ordinal
ranking of the resulting values to be permitted, that is, whether to accept ondy the best
value on that scale, the best N, or any value in the top N%. An example in the naval
domain where the agent is involved in filling the ?rship slot would be adding a
constraint that stricts the possible fillers to the five vessels closest to the damaged
ship, or to the single vessel most recently overhauled.

For representing scalar constraints, the special first-n or first-n% forms are
used, which define the restricted set according to the scalar function and cutoff values.
For example, the restriction to the five closest vessels is phrased as in Figure 6.5. This
clearly begins to stretch the bounds of the logical representation using sets of atomic
formulas; a more powerful logical form would be required to represent more
complicated added constraints, but that would also complicate the test for matches, and
it is not central to the general metaplan modeling approach.

It is interesting to compare scalar constraints and boolean constraints in terms
of their problem-solving purpose. Both are used to restrict the spd,, of possible fillers3 that must be considered, typically because the agent expects there to be many more
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Figure 6.5: Assertion Restricting Set to Five Closest Vessels I
candidates than necessary. Scalar constraints serve that limiting purpose directly, by
specifying an absolute or relative size for the desired subset along with the criterion to
be used to select it. They are subject to failures only if the entire set of possible fillers
is empty, or less than the absolute set size stated. Boolean constraints, on the other
hand, can fail when used in this way in spite of an adequate pool of possible fillers if
the fixed constraint happens to be strict enough to leave only the empty set. 3
6.5 Query Metaplans

The query metaplans, the second major class of metaplans, are a class of
problem-solving moves whose effects do not directly change the plan the agent is
considering, but instead provide the agent with information useful in evaluating the
various choices of subplans or variable instantiations. They are divided here into the
two subclasses of plan feasibility queries, which are used to determine whether the
preconditions of a particular plan class will allow it to succeed or not, and slot data
queries, which are used to gather information about the possible fillers of a free
variable slot for use in instantiating it. I
6.5.1 Plan FeasibilitN Queries

In the course of planning an approach to the goal, the agent may consider i
man) different possible plans, and different instantiations of the variables in those
plans. Plan feasibility queries, the most straightforward of the query metaplans, are
queries whose goal is to help determine whether or not a particular domain plan or I
instantiation will be executable. This is done by examining the values of the plan
preconditions for the given variable bindings, knowing that a plan whose preconditions
fail will not be executable.

The space of plan feasibility queries representable in the metaplan tree
depends on whether or not the plan preconditions of each node reached are tested
against the database to prevent building structure for infeasible plans. As discussed in

Section 8.5, Pragma can be run either in an instantiation mode or in a mode where
preconditions are not tested against the database. The instantiation mode would be the
natural choice if our goal was efficient planning, since that mode guarantees that any
plan actually found in the tree is feasible (up to the accuracy of the system's world
model). However, since our interest is in modeling the agent's planning process in
order to respond cooperatively and handle ill-formed input, it is important here that we
be able to include in the plan tree plans that are actually not feasible, but that the agent
might consider to be possibilities either through not knowing the facts that block them
or through not having worked out those implications. Plan feasibility queries
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concerning such plans can be recognized only when Pragma is running in this non-
instantiation mode. (A fuller comparison of the advantages of each mode can be found
in Section 9.5.1.)

[3 6.5.1.1 Ask-Pred-Value

The easiest way in this setting for the agent to test a precondition is, simply to
ask the expert what its value is for the given variable instantiations, and that is the
planning action encoded in the *ask-pred-value* metaplan. In the replace-ship
example, the agent might ask whether the proposed replacement ship is Cl or not,
since that is a precondition of the plan to substitute it for the damaged one. In that
example, the *ask-pred-value* metaplan node would include a free variable for the
predicate being queried which could be instantiated to any of the plan preconditions
introduced by the domain plan at the current node, including in this case (readiness
?rship C ). Thus the system's default behavior, unless particular heuristics come into
play, is to explore beneath a particular *build-plan* node the possibility of queries
about each of that plan class's preconditions.

Note that the restriction on *ask-pred-value* that it only query
preconditions of the current domain plan class rather than those inherited from plan
superclasses at higher nodes does not restrict the power of the model, since queries
about those preconditions can be raised by *ask-pred-value* nodes attached at that
higher level. The restriction merely serves to avoid redundancy in the metaplan tree,
where the same query could be matched not only at the level of the domain plan class
that introduces the precondition but also at every child plan class.

S6.5.1.2 Check-Pred-Value

An alternative query form for determining the value of a plan precondition if
either the required value or a likely value is known is to ask a yes/no question, modeled
by the *check-pred-%alue* metaplan, distinct from the preceding because the form of
the query involved is different. In our current example, that corresponds to asking

Is the Fox C1?

rather than

What is the readiness of the Fox?

I since the domain plan requires that ?rship have the top readiness value.

While the typical use of *check- pred-,%alue* is to ask whether the actual
value matches the one required in the plan preconditions, the agent can also use it in a
negative sense where a "yes" answer would mean the plan was not feasible if a
particular value for the predicate is especially likely. For example, a student
registering for the next semester and having a hard time finding courses with space
available might ask

Is CIS 145 full, too?
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as a way of testing the feasibility of the plan of taking that course, even though a
"yes" answer to the query implies that the plan is not feasible.

6.5.2 Slot Data Queries

While plan feasibility queries are used in deciding which of several subplans
to pursue, and therefore belong with the tree-outlining *build-suhplan* and *build-I
action* metaplans, slot data queries, the other major class of query metaplans, are used
to gather data about the possible values for the variable slots in the domain plans, and
thus are used together with the *instantiate-var* and *constrain-var* plans. As
always in our model, the agent is assumed to know the domain plans, and thus also the
existence of the open variable slot and the plan constraints upon its filler, but not
assumed to know what actual entities in the database are of the proper type to be
possible fillers or actually to fit those constraints.

As pointed out in Section 6.4.2.4, the slot data queries are formulated in
terms of the set of possible fillers for the slot, those entities in the world model of the
specified type for the slot that are therefore conceivable fillers for the slot. That set can
be restricted, as pointed out earlier, by using *constrain-ar* metaplans with
constraints either taken from the plan preconditions or added explicitly by the agent.

In this section, we present the metaplans for the different kinds of queries
that agents can ask about such sets of possible fillers, both simple queries like whether
they are non-empty, what their cardinality is, or for a list of their members, and also
more complex queries, assembled from a number of slot data query metaplans, like for
a list of members sorted on some relevant parameter or for only a certain number of the
set's members.

6.5.2.1 Ask-Existence

The *ask-existence* metaplan models queries by the agent as to whether a
given set of possible fillers is empty or not. For exanple, in the naval domain, the
agent might ask,

Are there any unassigned cruisers?

A negative answer would quickly rule out the entire replace-ship plan, since it
depends on the existence of a ship that can be used as the replacement. A positive
answer, as far as it goes, would justify continued exploration of the plan. If the set
used in the query is exactly the admissible set. that is, includes all the restrictions on
the slot found in the plan context, then a positive answer demonstrates that satisfactory
values for that slot can be found. However, if the query set is a superset of the
admissible set, formed by omitting some of the constraints, then a positive answer still
leaves open the question of whether a fully satisfactory value can be found. However,
a negative answer for a superset, naturally, implies the same answer for the admissible
set itself, and demonstrates that the plan is not instantiable.

Since the *ask-existence* query gives the agent only a proper subset of the
information available from other types of queries like *ask-fillers* or even *ask-l
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cardinality*, one might ask why it would ever be used. In logical terms, the only
justification seems to be if the effort involved in answering or in absorbing the answer
to the existence query is less than that required for the more informative ones. The
increased ease of answering and absorbing might be predicted to balance the decreased
information content, and the existence query can always be followed by a more
informative one. There are also other layers of constraints on the discourse that might
encourage the choice of this metaplan, since the agent, as a cooperative communicant,
is constrained by Griceian principles not to ask for more information than isnecessary
to the purpose or for more than will be useful. Thus, asking for a full listing of the
candidates or even for the exact number of candidates when the list would be large and
no effective use would be made of the further information would violate that
cooperative principle. Use of these weaker slot data query metaplans may be justified
on those grounds.

£ 6.5.2.2 Ask-Cardinality

The *ask-cardinality* metaplan goes one step beyond *ask-existence*,
querying how many entities of the gi.en type meet some or all of the requirements
attached to the slot in question, for example,

£ How many CI frigates are there ?

This information about the number of fillers in the set, in the case of a non-zero
answer, provides in addition the basic existence test data useful for selecting a
metaplan strategy to determine a desirable instantiation. Obviously, if the cardirality
of the required set is 1, then no further questions need to be asked, and further planning
and testing can then assume the use of the single feasible instantiation for this variable3 slot.

Even when the cardinality is greater tl'an , the size of the set may help
determine which metaplanning strategies will be most useful. A small set (say, less
than 10) can be listed in full, while a large set suggests the addition of further
constraints, related to performance if possible but random if necessary, to produce a set
from which a choice can reasonably be made. The fact that the useful value of the
response to an *ask-cardinality* query for further metaplanning is based not so much
on the exact value of the cardinality as on whether it is 0, 1, few, or many explains the
informal cardinality queries that occur, like

Are there many deployable cruisers?

that only ask for enough information about the size of the candidate set to be able to
select appropriate metaplans for continuing the plan building. The portion of the
heuristic component that depends on the agent's world knowledge can help to indicate
situations where the agent knows very little about the possible Filler set and thus is
relatively likely to use an *ask-cardinalit* metap!an, and can also make use of the
added knowledge provided by the system's answer to adjust the predicted scores f,
different follow-on metaplan steps.

I
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6.5.2.3 Check-Cardinaliti

The *check -cardinalitN* plan is similar to *ask-cardinality* in purpose and
setting, except that the actual query form is different, since the agent asks only the
yes/no question of whether the cardinlity of the set of possible fillers is equal to or
greater or less than a particular value, for example,

Are there two other carriers in the indian Ocean ?
Are there more than 5 C1 destroyers?

As with *check- pred-value*, this is the weaker plan of the pair, but it can be justified
in particular discourse contexts. The equal test, for example, suggests that the agent is
already fairly sure of the answer, and merely wants to confirm that the expert shares
this understanding, while the greater or less than tests suggest that the queried set size
is a logical divide between two different follow-on query strategies. *Check-
cardinality* queries can also be asked in a negative form, as follows:

The. e aren't more than 2 free carriers, are there?
No places are open in CIS 214 or 216, 1 suppose.

In those cases, too, the justification seems to be that the limit being tested is one of the
determining factors for a particular path being taken in the agent's planning process.
By drawing attention to that factor in the process of confirming it, this sort of query can
also inform the expert about the choice and its motivation, so that the expert's model of
the agent's plan can be updated; the expert can then either confirm the agent's facts and
deduction, perhaps confirm the facts but not the deduction by pointing out alternative
paths to the given goal in the current context, or else inform the agent that the facts
supporting the choice are not or are no longer true.

6.5.2.4 Ask-Fillers

The *ask-fillers* metaplan is the basic plan allowing the agent to learn
which entities in the world model are candidates for a particular slot in the domain plan
under consideration. For example, our naval planner might ask

Which cruisers are Cl

or a student registering for courses might ask

Which 300-level Computer Science courses have space available?

The restrictions applied to the goal set in the *ask-fillers* query can either be inherited
from plan preconditions in the current context or they can be added constraints that are
not already present in the tree; in either case, the query is matched by first building
appropriate *constrain-%ar* nodes to match the additional constraints and then
attaching the *ask-fillers* node.

Clearly, an *ask-fillers* query returns a superset of the information returned
by either *ask-existence* or *ask-cardinalits*, unless the answer is "None", in
which case all three return exactly equivalent nfc:maticn. The difference between the
amount of data required for an answer to the different queries increases substantially
with the size of the set, so that, in terms of Grice's maxim of relevance [21], an
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*ask-fillers* query is inappropriate if the size of the resulting set is known to be very

5large.
In additio r c the further plan constraints that can be introduced by

*constrain-var* mcves, *ask-fillers* plans can also be modified by one or more of

the following metaplans, *limit-cardinalitO , *sort-set-by-pred*, and *request-
attribute-%,alue*. These query modifying metaplins change the type, amount, or
format of the data to be displayed about the identified set of possible slot fillers.
Unlike the plan-building *con.strain- var* plans *add.-boolean-const raint* and *add-
scalar-constraint*, these query set constraining plans affect only the results of the
query and their interpretability, but have no direct effect on the value that will be
chosen as the instantiated value for the open variable. In the metaplan tree model, the
nodes for these query modifications appear as children of the *build-plan* node
introducing the open variable and parents in turn of the *ask-fillers* nor'e that models
the modified query. The model allows more than one of the modifier metaplans to be
applied on the same *ask-fillers* branch in order to handle queries like

List the C1 destroyers sorted by speed with their locations.

IThere are structural constraints on the possible modifier combinations, like that only
one instance of *lijnit-cardinality* makes sense in a single *ask-fillers* branch.
These constraints are not yet captured in the model, however, since the search routine
only instantiates modifier metaplan nodes when the query form suggests them, so that
overgeneration of inconsistent combinations is avoided in that way.

16.5.2.5 Limit-CardinalitN

5The *Iimit-cardinalit%* plan is a modifier on *ask-fllers* that aliows the
a2ent to place a limit on the number of possibilities returned. That lh-nit can be either
explicit, as in the query,

Name five of the courses that satisfy the hurnanitries distribution
requirement.

or approximate, leaving the expert som ,- discretion, as in

What are some )f the courses that satisfv'...

3 The explicit form is not often used, since an agent involved in an *ask-fillers*
metaplar, usually does nc. have enough information to motivate an exact limit. (That
kind of query is used in exams, of course, where the professor does know the
distribution of the candidate set, and is therefore not interested in being informed by
the answer, but in judging the knowl'dge of the question answerer, but tiat discourse
setting is quite different from expert advising.) The informal version of
*irnit-cardinalitO* serves the purpose of allowing the expert to return a partial listwhere that would be as informative as the complete one, given the agent's intended use
of the list as a source for plan variable slot instantitions.

This plan shares some of the flavor of *add-scalar-constraint*, which the
agent can use to limit the size of the set returned. It differs from it by not specifying at5 all how the set size is to be kept down. allowin- even random subset selection.
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6.5.2.6 Sort-Set-b-Pred

The *sort-set-by-pred* metaplan allows the agent to piggyback along with a
request for a list of candidates to fill a variable slot a request for information about the
ranking of the candidates along some scale. For example, our naval agent might ask

List the C1 cruisers in order of decreasing speed.

or

... in order of increasing distance from the damaged vessel.

The scale used for sorting is typically one that influences the marginal cost of the plan,
and that thus would be a way of choosing from among the list of candidates provided.
If there is a fLxed limit on the scale value in the plan preconditions, such a limit would
usually be included on Griceian grounds directly in the query, as in

List the cruisers whose readiness is at least C3, in order of readiness.

to avoid asking for detailed information that could not possibly be of use, since it
serves only to distinguish bet, 'een different classes of impossible candidates.

Specification of a *sort-set-by-pred* metaplan in .-n *ask-fillers* context
requires specification both of the scalar function by which the ranking is to be done and

of the direction along that scale which is to be ranked more aesirable. The function
used for the scaling may be one already referenced in the plan, like the readiness of a
vessel, one derived from information present in the plan, like the distance of the
possible replacements from the uamaged vessel as calculated from their locations or
perhaps the time required for them to reach that position based on location and speed,
or, less probably, scaling may, like an additional constraint, be based on some other
attribute of the candidates whose relevance is not derivable from :he plan context
model, since it depends on factors known to the agent and not the expert. All of these
are modeled as instances of *sort-set-b -pred*, but the heuristic component judges
the former where the scalar predicate is already referenced in the plan context as n.
probable.

6.5.2.7 Ask- \ttrihute-\ alues

The final slot data query modifying metaplan, *ask-attribute-value*, adds
to the query by requesting information about the values of some attribute or attributes
for each member of the candidate set. For example, our naval agent might ask,

What art' the locations of the Cl cruisers.?

The goal of this metaplan is presumably to usc the attribute values as a way of
choo,,ing a candidate to instantiate the slot. It can either be done, as in that example, in
.I Angle query' that identifies both tho desired set and the attributes(s) of interest, or else
the attribute value question can build on an existing slot data query that has already
identified a candidate set. The same issues applv in this case a, in the previous
metaplan as to the selection of the specific attribute values to be displayed, that they
are rno-t often attributes who,,e relevance is already clear by their being present in the
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plan tree preconditions or calculable based on such attributes, but that there is also the
less likely possibility of the agent asking for values whose relevance can not be
determined from the plan model.

The choice of which of the modifications to *ask-fillers* is most appropriate
for a given cornbiaticn of plan context constraints and agent world knowledge
depends on the comparat've cost of the different types of queries, which varies given
the sorts of mechanisms used, both for storing and searching the database and for
formulating and returning the answer. Thus, *ask-attribute-value* queries for the
complete information about an attribute are more likely with computer database
systems, where the additional cost of retrieving and displaying the attribute information
is small compared to the fixed cost of formulating and entering a query, than they are
with a human expert, where those cost ratios are inverted. In Griceian terms, again, the
extra work required of a human expert to return a full table for the agent's use is
seldom justifiable under the principle of not asking for more information than required,
while in dealing with a computer system, the small marginal cost of also printing out
the attribute values (especially when the query has already required that those records

be referenced) may easily be thought worth it just on the chance that the extra
information provided might prove useful. Another factor in the choice is the agent's
vicw of the cooperativeness of the expert, whether she can be trusted to expand on the
literal answers if there are marked patterns in the data that would be useffl in -electing
an instantiation, for example, answering a request for the two fastest cruisers by saying

Wilson, Frederick, and Vincennes can all do better than 28, while the rest
are much slower.

or perhaps to point out a misleading use of a scalar ranking, as when the "fastest" ship
is only a tiny amount faster than another group of possibilities. The Pragma model is
not currently refined enough to make use cf these kinds of estimated cost factors in
predicting the form of *ask-fillers* queries.

These modifier metaplans in combination with *ask-fillers* and the
*constrain-ar* plans capture a wide variety of the query behavior agents can use to

gather information about possible fillers for free variable slots while building plans.

6.6 Evaluati~e Metaplans

The plan-building and query classes of metaplans are the most developed
part of the model, "nd represent the behavior of an agent who is searching for a feasible
plan within a tree of possible plans whose precondition requirements the agent knows
but where the world state and therefore the actual success or failure of those
preconditions for given instantiations are not known. This sectior on evaluative
metaplans introduces a separate class of metaplans that are not concerned with
identifying a feasible choice, but with calculating the cost of a particular plan and
comparing that with the cost of alternative plans. For example, if our naval agent asks
about the Fox's fuel consumption rate, that query is not relevant to the feasibility of
using it as the replacement vessel, given the preconditions of replace-ship. It could be
matched by an *ask-pred-value* plan using a predicate not included in the plan
preconditions, but the context then would not capture the distinct flavor of the
evaluative purpose of that plan. A more precise model results from attaching such
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queries to a separate branch of evaluative metaplans.

The advantage of separating out evaluative metaplans comes in better model
prediction of related follow-on queries. This is partly because evaluative queries often
do concern different features of the plan context than feasibility queries, so that an
agent whom the metaplan context indicates is evaluating the cost of a particular plan is
likely to ask follow-on queries that are also evaluative, since the current metaplan
context is concerned with the cost of the plan, assuming its feasibility. The other main
advantage of separating out the evaluative metaplans is that it allows the heuristic
component to take account of the different patterns of movement within the metaplan
tree that are appropriate in evaluative rather than plan feasibility contexts. In plan
feasibility contexts, the usual pattern embodied in the heuristics is a depth-first
exploration of each plan branch, continuing the exploration of that branch as long as
the query answers still suggest that it is feasible. In evaluative contexts, on the other
hand, the agent is typically comparing the costs of alternative plans, so that movements
in the plan tree to evaluative contexts attached to parallel plan branches become
L uristically favored over deeper exploration within the current branch.

The evaluative metaplans are included in the model as a set of plan
exploration metaplans parallel to the normal plan-building set of *build-plan*, *build-
subplan*, and *build-subaction*. An evaluative metaplan subtree can be attached as
a child of any *build-plan* node, and the *evaluate-plan*, *evaluate-subplan*, and
*e~aluate-subaction* metaplans then form the foundation of an alternative exploration
path over the same domain plans. Within the evaluative subtree, the normal domain
plan feasibility constraints are not available for query matching, being replaced by a set
of relevant evaluative functions stored with each domain plan. For example, the
replace-ship plan carries as precondition restrictions that the class of the replacement
ship be the same as the damaged one and that the replacement ship be in deployable
condition itself, since otherwise it could not take over its mission. In contrast, factors
like the distance the replacement ship would have to travel or the amount of fuel that
would be consumed in doing so are not preconditions, but instead evaluative factors
that the agent may well consult in deciding which plan to adopt but which have no
direct effect on feasibility.

Note that the choice of whether a factor is coded as an absolute precondition
or as an evaluative formula is to some extent arbitrary. While one could imagine using
a destroyer from the Persian Gulf to replace a damaged one in Tokyo, for example, the
evaluative functions of cost and delay would be so severe as to be prohibitive, so that
that option might well be ruled out of replace-ship by a precondition test. The choice
of which factors to model as preconditions is part of the definition of the domain plans
as initially acquired, and the heuristic split between *build-plan* and *e~aluate-plan*
merely builds on those initial definitions. In the domain plans for Pragma, pairs of
plans have sometimes been used to get around this problem, separating, for example,
sail-without-refueling and sail-%%ith-refuelinu, which has the effect of limiting the
former to distances that can .. sailed with fuel already on board, using 'hat as a
precondition for that limited plan, but as only an evaluative function for the unlimited
one. Once such a separation is made, the heuristic sstem can take account of the
differences between the two plans by means of the heuristics discussed in Section 7.2.3
that are sensitive to the raw probabilities of particular plans for a given goal, so that the
unusual cases like replacing a damaged vessel with one from very far away will be
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given appropriately lower heuristic weights than the more frequently used plans.

5This parallel tree approach where the evaluative metaplans build their own
tree structure is a useful heuristic model for the difference in metaplan context between
plan feasibility queries and evaluative ones, although it does involve a duplication of
domain plan structure that could perhaps be avoided in a reworking of the model using
a higher-level metaplan for plan exploration that would trace out the domain plan
structure and that cotld in turn be specialized to metaplans for either feasibility queries
or evaluative ones. The difference between these two styles could then be made to
flow naturally from their different evaluation of the comparative importance of the
payoff spread between good and bad examples of feasible plans compared with the cost
of the planning effort required to separate the two. The plan feasibility strategy
assumes either that the differences between plans are not significant or that the effort of
planning is great enough to outweigh any such differences, while the evaluative
strategy assumes that the cost of planning will be justified by identifying a better plan.
A higher-level metaplan that could capture that relationship between these two
strategies and thus model more flexible combinations of the two would be a useful3 extension to this metaplan model.

The following subsections first present the basic *evaluate-plan* metaplan
scheme and then discuss some possible higher-level metaplans that could be used to
capture particular structures of plan evaluation that occur in problem solving.

3 6.6.1 Evaluate-Plan, Evaluate-Subplan, and Evaluate-Subaction

The *evaluate-plan* metaplan is the equivalent in the evaluative context of

*build-plan* in the normal plan feasibility context. Because it is one of the children

of *build-plan*, it allows an evaluative subtree to be attached at any level of the plan
tree where the heuristic search might call for it. The effect of *evaluate-plan* is to
add not the preconditions of the current plan but its evaluative factors to the set
available for matching to an input query. This approach covers both simple
*ask-pred-value* evaluative queries like

3 What is Fox's speed?

and also more complex query constructions. A query like

5 What is the fuel consumption of the CI frigates?

could be matched by first attaching an *evaluate-plan* node beneath the *' -plan*
for replace-ship and then adding nodes for the query metaplans *ask- 41ue* and
*ask-fillers*. Later queries might then also match to nodes of an evaluative subtree
rooted in that *evaluate-plan*.

*Evaluate-plan* is treated specially in the searching of the metaplan tree

because is it unclear over what range of plans the evaluation is intended to apply.
Thus, if the search moves above the original *evaluate- plan* where it attached to the
*build-plan*, the attachment point is also moved up one level to the next higher
*build-plan*, copying the intermediate structure and converting it into the parallel

evaluative structure. For example, suppose the previous context was established by the
i query
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What is Foy's speed?

which matched to an *e~aluate-plan* node attached to the *build-plan* for the sail
action. If the next query were

What is Perry's speed?

the evaluative subtree would be propagated upward, copying the structure up to the
replace-ship level, yielding an evaluative subtree rooted in an *e, aluate-plan*. for
replace-ship. This larger evaluative branch would he included in the search using the
special evaluative heuristics that encourage comparative exploration at the same level,
leading to a quicker match under the *instantiate-%,ar* child of that upper *e~aluate-
plan* that instantiates the ?rship to the Perry.

The other two metaplans in the *e~aluate-plan* family are parallel to those
that go with *built-plan*, following the subplan and subaction links that outline the
domain plan structure. The *evaluate-subplan* metaplan is the corollary of
*build-subplan*, allowing expansion of an evaluative branch of the metaplan tree
representing the agent's comparison between the costs of different plan subclasses.
*Evaluate-subaction*, corollary to *build-subaction*, models consideration of the
cost of the subgoals necessary to the achieving of the current goal.

6.6.2 [Iigher-Level E~aluative Metaplans

A natural extension to this basic evaluative metaplan scheme would allow for
metaplans that captured particular evaluative strategies where there is a further
structure to the evaluative process that can provide additional predictive power about
the agent's likely follow-on steps. An important example of such structure is when an
agent compares two different plans point for point, leading to a very strUctured pattem
of queries. Another case would be an agent trying to select the optimal plan from all
the possibilities, which suggests that the queries will cover all possible plans for the
goal before moving to a new topic. In this section, we sketch out metaplans for those
two cases of more highly structured evaluative planning, showing how they could be
added to the existing metaplan model.

A *compare-plans* metaplan would model a problem-solving strategy
where the agent queries evaluative features of a particular set of plans in a way
organized by their features, rather than by their subclass structure. For example, a
student using *compare-plans* across earn-credit plans for a number of different
courses (perhaps the answers to an earlier feasibility query about which courses had
space available) might ask first about the meeting time of each course, evaluating
convenience of access, than about the identity of the professor, and then whether the
course has a final exam. Each topic would be covered for all the courses in the set
before moving on to a new topic. In fact, it is probably more accurate to say that the
queries in *comfpare-plans* are organized around issues that impact the agent, rather
than directly around individual plan evaluation features, since a comparison may
sometimes span unlike plans with different features that impact the same issues for the
agent. For example, a student with particular trouble in speaking that caused her
grading anxiety in considering courses might ask about the weight given to class
participation in a small course and about the chance of an oral exam in a large one.
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There may also be issues that need to be considered in combination, for instance,
where the location and time of each course need to be considered together to determine
ease of access. Whether phrased in terms of issues or features, it is clear that modeling
the structure of a developed comparison would require additional metaplan structure to
capture the set of options being compared and the space of possible issues on which the
comparison is being based.

The advantage of a *compare-plans* metaplan would be that. it would
supply new links in the tree showing that a closer relationship exists between the plan
nodes being compared than that traced in the usual plan tree structure. For example, a
consumer comparing two cars might ask a sequence of questions that jump back and
forth between the two different variable instantiations, asking the price, the fuel
economy, power, and so forth for each of the two. In the normal *build-plan* scheme,
this would require jumping back and forth between two branches of the tree separated
by the different instantiations for the ?new-car variable. That jumping would be
especially difficult if matching the particular queries required building down into
subplans and actions below the plan class in which the ?new-car variable first appears.
A *compare-plans* metaplan, however, would explicitly encode the comparison that
the agent is pursuing. The heuristic component would be arranged so that a jump from
one instantiation to another (or to an alternative plan class) would cause the setting up
of a comparison metaplan between the two contexts, and any continued alternation then
would follow that more direct link between the two contexts.

Another example besides *compare-plans* that introduces further structure
on a higher level than that of the basic *evaluate- plan* is *choose-optimal*, a
metaplan that captures the strategy of an agent who intends to evaluate each of the
possible plans for a goal in order to pick the best option. This metaplan when triggered
sets up the expectation that each of the options will be explored to at least some extent
before a choice is settled on, a strategy that is the opposite of that assumed in the
typical *build-plan* feasibility case, which settles on the first feasible plan found.

I Extending the metaplan model with these higher-level evaluative metaplans
would add considerable additional representational power, though it would naturally
also introduce additional ambiguity in tracking the agent's metaplanning strategy since
the query sequence alone often provides insufficient data to deduce a precise model of
that strategy.

I 6.7 Informing Metaplans

The informing metaplans are different from those discussed so far in that the
agent's direct purpose in pursuing these metaplans is to affect the expert's model of the
planning space that the agent is exploring or of the priorities that the agent attaches to
particalar goals or methods within that space. Thus, while the expert may infer from
an *ask-pred-value* action that the agent is exploring that portion of the domain plan
tree that matched the given query, that inference is a byproduct of the agent's metaplan
action, rather than its explicit purpose, while with informing metaplans, that becomes
the explicit goal.

One theme of the entire metaplan modeling approach. of course, is that
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agents are aware of the deductions that the expert will draw from their behavior, even
when the explicit purpose of their behavior is plan building, and part of the
productivity of the expert advising relationship comes from the agent being able to
depend on the expert making exactly those expected inferences. The agent depends
upon the expert making reasonable deductions from the agent's explicit behavior about
the agent's plans and goals since advice-giving behavior is so heavily dependent on
this context that the value of the answers would be strongly compromised if the expert
were not working from a model of the agent's goals. Thus conveying enough
information so that the expert will have an appropriate model becomes an important
part of the agent's own goals, in oider to enable cooperative responses.

The agent is usually assisted in this task of ensuring that the expert is able to
track her goals by having a plan library that is shared (at least largely) between agent
and expert, and by the mutual understanding of the discourse structure of problem-
solving dialogue, which allows the agent to predict what the expert will be able to
deduce on her own directly from the agent's queries. Based on their own model of this
shared data, agents only need to communicate directly about their goals when they feel
that the expert will not be likely to be able to deduce the proper context on her own, but
they must in those cases add direct statements to communicate the correct context, and
that is the role of the inform metaplans.

The agent is constrained by Grice's twin maxims of quantity [21] to offer the
expert enough information about context but not too much. The ageat must provide
enough context so that the expert, combining that explicit information with established
expectations in the domain, will be able to build a model that is adequately constrained
to resolve any ambiguities that would significantly affect the responses to be made to
upcoming queries. For example, in the hardware store query

I want to extend a wrench handle. Do you have any 3/4" pipe?

the context-setting initial statement resolves many ambiguities about the actual query,
such as what kind of pipe would be suitable, the approximate length required, and such.
In a slightly different way, the toy store shopper who explains that her son wants either
a bike or a game, while providing little extra data about the characteristics of the
individual goals, does provide a context that makes sense of a conversation that will
connect two goals that have no other obvious relationship. That in itself makes the
expert's modeling task easier by avoiding wasted energy searching for some inherent
connection, and thus does add relevant data.

On the other hand, the agent would also be transgressing the maxim of
quantity if she were to provide information about her plans and goals that did not have
plausible bearing on the responses the expert would make. For example, if the
hardware store shopper were to start explaining why she had decided to redo the
bathroom before the new tenants arrived, or if the toy shopper started explaining that
making this child happy was especially important because her older sister tended to
give her a rough time, they would be adding information that had no relevance to the
expert's model building because it is quite unlikely to affect the answers the expert
would give to the following questions. Such extra information might be justified in a
friendship context by the goal of mutually learning more about the other person, but it
is intrusive in the expert advising context exactly because it conflicts with the maxim
of quantity.
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In this connection, it is interesting to consider the efforts to %hich agents
must go when they wish to prevent the expert from inferring this data about their
intended goals, either because of embarrassment or a desire to mislead, where the
purpose must remain hidden. Gathering the necessary data without allowing the expert
to infer the actual plan requires either that the significant queries be buried among a
large number of irrelevant queries, whose purpose is simply to confuse the expert's
inferential processing, or that an actual alternative plan be constructed that does not
need to be kept secret but that does overlap with the actual plan in terms of requiring
the key data. Both strategies sacrifice the benefits that usually result from the expert's
cooperative behavior based on her inferred understanding of the agent's goals and
plans; the former also warns the expert that the agent probably has some hidden goal,
since the expert will soon see that there is no plausible overt goal that could motivate
such a sequence of unconnected questions except that of distracting the expert from the
meaningful subsequence.

3Nevertheless, while agents are aware of the expert's inferential processing
that is attempting to deduce facts about their goals from the sequence of queries, that
process is usually relegated to the background. The unusual thing about the metaplans
in this section is that their explicit purpose is to inform the expert about the agent's
goals and constraints. These are the plans used when the agent decides that additional
information beyond that which the expert can reasonably infer is likely to be helpful to
the expert, and so chooses to provide that additional context directly. These metaplans
therefore make explicit the communication of goals from agent to expert that usually
happens in the background of the advising process and by inference.

Because these plans make that informing process explicit, we can note two
unusual features of these informing metaplans when compared to the other classes
covered so far, the first being that they give the agent more control over the expert's
model of their goals. While the inferential process can only infer average degrees of
positive interest in particular goals from the exploration of plans that would achieve
those goals, an explicit inform metaplan can communicate stronger positives, telling
the expert that the agent has committed to a particular path or a particular choice of
variable instantiation to the exclusion of other alternatives, and also can communicate
negatives, ruling out particular subplan options or particular sets of variable fillers,
unlike the inferential process, whose strongest negative results from a lack of any
demonstrated interest in the particular option.

3 Second, these inform metaplans are also unique in not causing any structure
to be added to the expert's model, because in themselves they only communicate the
agent's positive or negative constraints on certain plans, rather than introducing new
options. It is true that the expert may only learn on the basis of such an inform
metaplan that a particular option was being considered, but it is clearer to understand
that as two separate events, an inference from the inform that the given plan is being
considered, one that is just like the similar inferences from query actions, followed by a
inform metaplan that sets the heuristic measure of the agent's willingness or interest in
that plan to either a high or low value.

IThese informing plans are similar in purpose to the cooperative behavior
described by Joshi, Webber, and Weischedel (301. There they pointed out the5 responsibility of cooperative speakers to block incorrect assumptions on the part of
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their hearers that would otherwise lead their hearers to an inc6 rrect model of the
speaker's intent. In order for the conversation to proceed felicitously, the speaker
needed to be sure not only that what she was saying was correct, but also that the
hearer's conclusions based on it would be correct. These inform metaplans similarly
are attempts on the agent's part to ensure that the model the expert will derive from the
sequence of queries will match the agent's actual intentions.

It is also interesting to observe that the tradeoff between informing metaplans
and the normal plan-building and query ones is affected substantially by the agent's
perception of the knowledge and cooperativeness of the expert. Users of traditional
computer database systems, for example, knowing that the expert in that case is able to
answer queries but is not maintaining any plan context model, would have no reason to
attempt informing metaplans, just as there is in that context no reason for them to try to
ensure that their query sequence is suggestive of their goals and not misleading.
Agents consulting with cooperative human experts, on the other hand, know that they
can gain through informing actions, and may even use informing as a way of asking the
expert to actually build the plan, rather than just to supply the data for the agent to use
in that process. As NL systems become more sophisticated about maintaining and
using a model of the agent's intentions, agents may come to realize the usefulness of
also informing that kind of expert about their goals.

The inform metaplans can be divided into two classes, *inform-goal* and

*inform-constraint*. Their effect is to replace the former representation of the

current context as a node in the metaplan tree (or more than one if the previous match
was ambiguous) with a representation for the new context implied by the inform
actions. This could be implemented in the model at least for straightforward examples
by having *inform-goal* be a child of *build-plan* and *inform-constraint* of
*constrain-%ar* so that the inform nodes would be associated with the plan-building
nodes describing the appropriate plan class or constraint. The inform metaplans are the
only nodes that will match with the partial interpretations of inform utterances, both
because their form is different from the normal query form and because their body
contains plan class or constraint descriptions, so that an agent's explicit goal statement,
for example, would cause a search through the tree for a *build-plan* node with an
*inform-goaI* node attached whose plan class description would match with the plan
class specified in the utterance. A match to that *inform-goal* node would then
automatically have the effect of resetting the current context to be that described in the
goal-informing statement.

6.7.1 Inform-Goal

The *inform-goal* metaplan is used when the agent wants to steer the
expert's modeling of the agent's planning process, providing explicit indication of the
goal that the agent is attempting to achieve, in cases where the agent judges that the
expert would not otherwise be able to deduce it. In the naval domain, if the damaged
ship was out of commission due to a broken radar, the agent might specify,

I bet Wilson has the spare parts. How far away is it?

While that query includes an *instantiate-var* to Wilson followed by an
*ask-pred-value* for the distance between it and the dai.aged ship, it also goes out of
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its way to make clear what plan the agent in considering, namely, the use of Wilson to
supply the spare parts as part of repairing the damaged vessel, rather than as a
replacement ship itself.

The additional information of an *inform-goal* is attractive to the agent
whenever it seems that the expert would otherwise have difficulty for whatever reason
supplying the plan context correctly. In the example above, the reason for the
*inform-goal* comes from the ambiguity between use of the Wilson as itself the

replacement ship (since it fits all the requirements for one) or its use only as a source of
spare parts for repairing the damaged Sterett. The agent is aware of the expert's plan
model and therefore of the danger that the expert will choose the closest domain plan3 into which the query about the Wilson could be fit, and thus misidentify the plan.

Thus, examples of *inform-goal* are especially likely in cases where the
plan is unusual or ambiguous. However, even in cases where the expert is likely to be
able to identify the agent's plan correctly from the query itself, if that possibility would
be only one among a number that the expert would have to carry along, then the
reduction of ambiguity and the associated easing of the expert's modeling task may
itself be worth the effort of a goal informing.

6.7.2 Inform-Constraint

The other informing metaplan is *inform-constraint*, where the agent
informs the expert explicitly of a constraint she wishes to apply to the possible fillers of
a particular open variable slot. Just as *inform-goal* allows the agent to explicitly
specify particular plan subclasses, *inform-constraint* does the same for restrictions3 on variable values. For example, a naval agent who had already used *inform-goal*
to say

I want to replace the Sterett.

could continue with *inform-constraint* by saying

3 I want to use either Fox or PerrN.

Just as with *in'orm-goal*, *inform-constraint* allows the agent to make
explicit statements about exactly the sort of plan modeling issues that the expert is
usually left to deduce from the queries and the context. In this explicit form, naturally,
the agent has more control over the goal structure communicated, and can
communicate quite complex constraints. However, since the deductive style usually3provides adequate context, problem-solving agents only resort to inform actions where
unusual circumqtances of ambiguity or complexity suggest that the extra information
will significantly improve the expert's ability to respond helpfully.

II
I
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6.8 The Combined Metaplan and Domain-Plan Model

In this last section, we describe briefly how the metaplans we have been
considering can be used to build a tree that represents the state of the agent's planning
process at the metaplanning level, in much the same way that the domain plan tree of I
domain plan classes looked at in the previous chapter models the agent's action plan.
In fact, we will see that the metaplan tree ends up including enough information about
the domain plan tree that it can itself serve both purposes. 3

First, then, the subplan and subaction relationships among the metaplans
guide the ways that the metaplan tree can expand. For example, while many plans can
be direct children of *build-plan*, a branch containing a *limit-cardinaliti* query I
has to end with an *ask-fillers*. This models there being many different approaches to
building a plan in general, but also captures the internal coherence among elements of a
line of inquiry once initiated. Re'evance of the particular metaplan to the metaplanning I
situation is captured, as expected, in the constraints of the metaplan, which require, for
example, that an *ask-fillers* branch can only be initiated beneath a *build-plan* for
a plan that contains open variables not bound at that point in the tree by any earlier U
*instantiate-var*.

For our purposes, the tree of plan-building, evaluative, and query metaplans
includes all the necessary data that would be found in a separate model of the domain
plan tree, and thus subsumes it. As we have seen, the central plan-building metaplans
include arguments for the domain plan being considered and for tneir arguments, I
including the values being considered for any open variables in the domain plans.
Thus the complete domain plan tree can be found by following these links from the
metaplan tree nodes. There is no reason for our purposes here to maintain an
independent model of the domain tree.

One reason why this simplified model is possible is because domain
modeling of expert advising interactions can ignore the state of execution of the I
domain plan. During the consultation, we assume that the agent is not taking any
actions that change the problem state, so that the problem and the possible actions to
resolve it can be viewed as a fixed context for the plan-building and queries. Thus, we I
get away here with a single world model to describe the situation, against which the
trees of altemative plans can be built. This assumption of a fixed world during the
consultation does not mean that the domain plans in a metaplan model like the one I
presented here cannot represent change. The addition of time indices to the formulas
would make it possible for them to represent future changes caused by the plans under
consideration and even to deal with the problems of interacting plans. Building a plan I
context to handle questions like

Is CIS 214 offered in the spring? 3
for example, requires that the system be able to conclude that it is feasible to take
CIS 214 in the spring given that one is enrolled in CIS 213, its prerequisite, in the
current fall semester. When the times of future actions are not specified fully, there I
may be ambiguity about the answer to be given depending on how the times areinstantiated. Thus the answer to the query

Will Frederick be in Honolulu on Monday? I
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certainly depends on whether other actions involving that ship are undertaken in the
meantime. All of these general issues in temporal planning and interacting plans also
apply to the domain planning underlying the metaplan problem-solving model even
though the specific issue of changes in the world from cuirent action can be avoided.

The metaplan tree thus is able to serve as a model of the pragmatic context
both on the domain planning level, where the current plan subclass and variable
instantiations capture the class of plans that the agent is considering, and on the
problem-solving level, where the metaplan tree models both the subclass and variable
instantiation refinement steps that the agent has used to arrive at the current plan and
the precondition and set filler queries the agent has asked to gain information about the
feasibility or relative cost of the various plan options. The ability of this model to
capture and predict the agent's problem-so!ving process is the heart of Pragina's
approach to applying pragmatic knowledge to resolving ill-formedness.
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CHAPTER 7

LINKING TO PRAGMATIC CONTEXT TO RESOLVE ILL-FORMEDNESS

in this chapter, we consider how to use the pragmatic context model based on
metaplons described in the previous chapter for resolving particular classes of ill-
formedness. In broad terms, the appLoach is to use the pragmatic model to generate a
space of predictions for the possible next plan-building moves on the agent's part and
for possible queries stemming from those moves, and then to search in that space for
nodes that can be linked to the actual ill-formed query, where "linking" is used for the
process of identifying possible matches with the partial interpretation representing the
understood portion of the ill-formed query. The plan-building, set, query, and
informing metaplans presented in the previous chapter, along with the library of
domain-level plans, are used to generate the prediction space of possible plan-building
moves and queries. This chapter presents the heuristic principles and methods that can
be used to rank the plan-building and query nodes, adding a probability metric to the
search space to help direct the search toward the most likely links.

This heuristically-guided search for links takes place in the space of possible
problem-solving moves outlined by the metaplan model operating on the domain plans
relevant to the known top-level plan context. The advantage of that model is that it
does map out the plausible follow-on queries that can result from the agent's
consideration of related topics in the plan building process, limiting the set of possible
queries that needs to be searched to those that are logically related to the former
context and imposing a structure on that space that makes it much easier to search.
Thus the theory of the metaplan model provides the core of knowledge needed for the
linking approach.

However, the space of possible continuations in expert advising dialogue is
rich enough that the hard constraints provided by the metaplanning model in terms of
what queries can be asked still leave a space of possibilities that is too large to search
exhaustively. The structure of domain plan classes and actions outlined by the plan-
building core is already large, each of those *build-plan* nodes can be expanded in
turn by any of the applicable query generating plans, and the *constrain-%ar* plans
can even introduce arbitrary further constraints, making it impossible 'o fully explore
the space of metaplan nodes accessible from any given node.

Because the metaplan model can generate a very large number of possible
plan-building moves and queries from any particular context, practical use of this
linking approach requires well-developed heuristic methods for directing the search
and for ranking the different links identified. Even if the input be2ing tracked was well-
formed, heuristic guidance would be necessary, since there are frequently multiple
metaplan derivations from a given context even for the same well-formed query,
derivations that assume different underlying plan-huilding moves on the agent's part,
even though the resulting query turns out to be the same. For instance, in the example
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from the previous chapter where the Sterett was damaged, the query

Where is the Frederick?

could be generated either by consideration of a plan to replace the Sterett with the
Frederick or by a plan to use the Frederick to deliver spare parts so that the Sterett
could be repaired on station.

This need for heuristic control is even more apparent iri working with queries
that are ill-formed, so that only a partial specification of the parse for the query is
available, a partial specification that, naturally, may seem to link to many query nodes
that the fully interpreted query would not have linked to. Indeed, as discussed in
Section 2.1, relaxing the rules of well-forrnedness in any context can make the search
space much larger and greatly increase the number of candidate solutions, to the point
that if arbitrary relaxations were allowed, a complete search could identify any
particular sentence as an ill-formed way of expressing any possible thought. Even
though the single-word error assumption prevents things from coming quite to that
extreme, still this process of linking to the predictions of the pragmatic model is
particularly dependent on heuristics when working with queries that are ill-formed.

The feasibility of linking for ill-formedness resolution is due to the full
exploitation in the search of the heuristic expectations generated both by the pragmatic
context and by the partial interpretation of the ill-formed query. Therefore, there are
both heuristics discussed in Section 7.2 based on the pragmatic context tree itself,
predicting the likely moves within it based on the previous context and independent of
the actual current query, and also heuristics discussed in Section 7.3 based on the
partially understood query which further constrain and direct the search toward areas of
the tree where links might be found. This combination of heuristic methods provides a
degree of robustness not attainable with either knowledge source independently.

Throughout this chapter, we will see that the heuristics that are used in
identifying links between the partial interpretation of an ill-formed qur-ry and the
pragmatic context grow directly out of those that are used in the normal query-to-query
updating of the plan context tree. The heuristics of tree distance and context and those
based on the query form and content operate in the same way, in fact, whether the input
query is well-formed or ill-formed, with the only exception being that the partial
interpretation of an ill-formed input often is not able to supply the data necessary for
the operation of some of the query-centered heuristic constraints. Thus, the bulk of this
chapter presents the heuristics as they operate in tracking well-formed queries, and
Section 7.4 later discusses the necessary modifications in the heuristics when linking to
ill-formed queries.

7.1 A Framework for Heuristics in the Metaplan Tree

Although various kinds of heuristics are used in the Pragma system to rank
the likelihood of the possible plan-building moves and queries and to direct the search
for a link to the actual ill-formed query, a single representational scheme was chosen,
designed to be powerful enough to serve for all of them, namely a combination of
scores attached to each metaplan tree node with a form of condition/action heuristic
rules or "h-rules". The condition tests of the h-rules can examine the existing score of

84



I
Report No. 7047 BBN Systems and Technologies Corporation

the node, the neighboring metaplan tree structure, and the instantiation of metaplan
variables to elements of the domain plans or domain model constants, while the action5parts of the rules can either reset the score for the current node completely or else alter
it by adding or subtracting a given amount. The score for a node is determined when
thzt node is reached in the exploration of the metaplan tree by testing each of the h-
rules against the conditions at that node and executing the action parts of those rules
that succeed, resulting in the assigning of a score to the node.

The function of the heuristic scores assigned to the metaplan tree nodes by
the h-rules is to impose a probability metric on the search space of possible plan-
building moves and queries, so that the search process can focus first on those portions
of the tree that represent the most likely moves for the agent in the given context. The
search process is driven from a sorted agenda that chooses for expansion at each step
the unexplored node in the metaplan tree with the highest heuristic: score, su that the
most likely expansions of the metaplan tree as judged by these heuristics are tested for
possible links first. In judging that likelihood, the h-rules make use of information
from various sources, as the rest of this chapter will show, including the shape of the

metaplan tree, the particular configurations of nodes surrounding the node being
scored, and clues to possible links found by comparing the node context with the
partial interpretation of the current query.

3 While examples of the h-rules will be presented in this chapter as they are
implemented in Pragma, it is important to stress the difference between the
implemented form of the h-rules and the heuristic principles they embody. The
significant elements in the heuristics presented in the rest of this chapter are the source
and kind of information considered relevant and the direction and degree of influence
that the given fact is considered to have relative to the other heuristic influences. The
elements of the actual encodings for the h-rules that will turn up in the examples like
the specific scores given to particular rules are only meant as a general indication of the
strength and combining power of the given heuristic influence. While the details of the
combining scheme for heuristic scores will have an important effect on the
performance of any particular implementation of this linking approach, those details
will always be dependent on particular features of the implementation. The sources
and directions of heuristic guidance that are useful in this situation, on the other hand,
are factors that will be true independent of implementation.

3 7.2 Probable Query Prediction: Heuristics from the Context Itself

There are three classes of heuristics that distinguish between the likelihood of
various next steps based on the current context alone, apart from the actual query: first,
a set of general heuristics dependent on distance in the tree as a measure of relevance
and coherence and on encoding in the heuristics typical problem-solving strategies to
help direct the search of the plan tree, second, a set of more specific heuristics
predicting the agent's choices between different metaplans based on a model of her
knowledge about the current state of the world, and third, heuristics that select between
different instances of the same metaplan based on features of the domain plans
involved. All of these heuristics, of course, are built on top of the metaplans
themselves, which define the basic shape of the space of possible plan-building actions5 and queries within which the agent's planning behavior is interpreted, but while the
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metaplans are intended to provide a complete description of the space of possible
problem-solving actions, the focus in this chapter is on a heuristic structure of probable
expectations that can restrict that space of possible problem-solving behaviors.

7.2.1 Heuristic Use of Tree Shape and Problem-Sol ing Patterns

The shape of the metaplan tree is used in a number of ways as a model of the
agent's problem-solving process that can direct the plan-tracking search for the most
likely node in the tree corresponding to a particular prcblem-solving action. The
fundamental heuristic here is to interpret the metaplan tree as an analogue of the
agent's problem-solving space, so that nearby nodes in the tree refer to issues closely
related to the current context in the agent's process. This use of tree distance as a
heuristic would suggest a breadth-first search in the metaplan tree working outward
from the known previous context. That simple model is then refined by modifying the
breadth-first search so as to better predict the typical problem-solving behavior of
human agents, and especially the depth-first exploration of subproblems that is part of
typical human problem-solving coherence. Finally, we point out how the model can
account for other, n'n-typical problem-solving patterns and adjust its search strategy to
account for them.

7.2.1.1 T'ree Distance as a Model of Coherence

The main heuristics used to predict relevant continuation queries based on

the plan context as encoded in the tree derive frcm tLe shape of the tree around the
current context by implementing a modified form of breadth-first search. Such
heuristics are implemented in Pragma by default rules like the following
default-downward-subplan rule that initializes the score for a new *build-subplan*
node by taking the score of its parent *build-plan* and reducing it by a small, fixed
amount, as shown in Figure 7.1.

(def-h-rule default-downward-subplan (?node)
conditions ((subplan-of ?parent-node ?node)

(node-score ?parent-node ?parent-score))

actions ((set-score ?node ?parent-score)
(dec-score ?node 5)))

Figure 7.1: Default-Downward-Subplan H-Rule

Here the first condition identifies the parent-noce, the second, when unified against the
database of search data, retrieves the parent's score into the variable ?parent-score
(unless the parent has no score assigned yet, in which case this rule does not fire), and
the actions set the child node's score to that of the parent less 5. There are default rules
similar to that given above to cover each of the kinds of links in the metaplan tree in
both downward and upward directions. The effect of these default rules is to score
more highly those portions of the tree nearest to the context where the search is begun.

These heuristics are based on a double approximation, first that distance
within the plan tree can be used in some form as a measure of logical relatedness, and
-cor.d that logical rclatedness can be used to predict likely follow-on queries. Thus
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one searches the nearby portions of the plan tree first, believing that they represent
metaplan processes closely connected logically to the current context, and thus more
likely than more remote nodes to be able to be matched with the agent's follow-on
queries.

SThe first step here, the use of distance in the metaplan tree as a measure for
logical relatedness, is implicit in the spreadhig activation style of the search process for
links in Pragma, which organizes the search largely as a breadth-first search working
out in the tree from the current context. Note that this sense of distance in the plan tree
is not one that can easily be logically formalized, since the number of layers in a
classification hierarchy depends on the fineness of the distinctions made, so that the
number of steps of subplanning separating, -ay, restore-battle-group-readiness and
replace-ship depends on the amount of elaboration that has occurred over the levels in
between, and thus whether possible intermediate plans like restore-group-readiness-
usir-n ew-equipm... c c- troe-group-readiness-singie-repiacement wilt exist as
their own layers in the metaplan tree. Thus, the semantic distance covered by each
layer of the classification hierarchy of plans is somewhat arbitrary. It is a reasonable
heuristic measure nonetheless, since all that is necessary for these heuristics to work is
for there not to be large differences between various branches of the tree in terms of
how densely subdivided they are. That is, only the relative, rather than the absolute,
measure of depth is used heuristically by the system, and that measure will be useful as
long as the different areas in the plan tree are treated consistently.

Another use of the shape of the metaplan tree, in addition to selecting which
metaplan nodes are explored first, is to provide a heuristic cutoff beyond which the
search can be terminated. Such a cutoff is necessary, since the size of the metaplan
tree is in principal unlimited, and even in practice, that tree will be very large, so that a
complete search across it would be prohibitively expensive. Thus any practical system
has to rely on some heuristic judgement of how much of the tree should be searched to
find candidate matches for a particular utterance. The fact that the tree structure can be
taken as an analogue to some degree of the problem structure in the agent's
formulation means that it is quite unlikely that the correct match to a closely related
query will be found far away in the tree, so that the assumption that the agent tends to
explore logically related topics justifies the use of a tree distance heuristic to restrict
the search.

Note that the gradual]: I aying scores assigned by these dc.,ault tree
distance heuristics are only one factor in assigning scores to newly explored nodes, so
that it is quite possible that a more highly-ranked match can be found farther from the
previous context than a lower-ranked one, and heuristics based on other factors can
also help to cut off a particular search path more quickly than the default tree distance
alone would have done. However, these default h-rules provide an underlying breadth-
first character to the search that focuses it in areas closely related to the previous3 context.

I
I
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7.2.1.2 The Typical Problem-Soliing Pattern

While distance as measured in the metaplan tree can model a general sense of
logical relatedness, there is further structure to the agent's problem-solving process that
the heuristic component must also try to capture. There are patterns of exploration
within the problem-solving tree, and by recognizing those patterns, the system can
predict more accurately the agent's likely follow-on queries. The pattern of
exploration tends to vary with the class of metaplan involved, with the normal plan-
building metaplans showing a typically depth-first exploration pattern, as discussed in
this section, while the evaluative metaplans evoke the more comparative, breadth-first
one covered in the following section.

The typical exploration pattern for the aspect of problem-solving behavior
captured in the plan-building metaplans appears to follow a depth-first approach in
which one subproblem is worked through to completion before the agent begins on
another subproblem. In the plan-building context, this means that all the plan
feasibility queries relating to one domain plan class and the actions it entails are likely
to be asked before any relating to a different plan class. This depth-first approach
seems to apply both at the *build-subplan* and *instantiate-var* nodes that are
logically OR nodes and at the *build-subaction* AND nodes. As for the former,
given that the agent is searching for a feasible solution, it makes sense that she would
not abandon any of her tentative choices to refine or partially instantiate the proposed
plan unless and until those choices had been shown to be infeasible. That much
implies that alternate plan choices will not usually be explored until the previous option
has failed to pan out. The depth-first pattern also seems to apply even at AND nodes,
where each branch will eventually need to be explored, and here the justification is
probably more one of efficiency in terms of focus of attention, that a depth-first pattern
requires fewer context-switches between different parts of the problem.

Remember that there are two mutually-supporting arguments for why human
agents tend to use a coherent and predictable problem-solving strategy, in this case,
following a depth-first problem organization. On the one hand, as just mentioned, that
pattern of exploration may be the most efficient from the agent's point of view. On the
other hand, regardless of what is easy from the agent's point of view, the agent is
driven to using a coherent strategy exactly because that is easier for the expert to track.
The tracking effort and number of context switches required of the expert is as
important a factor in determining a preferred problem-solving strategy as that required
of the agent. The expert's ability to track the agent's goals is important both for the
expert, in terms of her understanding about the situation, and for the agent, since the
expert's ability to be helpful is strongly dependent on the extent to which the expert
understands the agent's goals. As discussed in Section 2.2, it is that knowledge of
tracked pragmatic context that makes many sorts of cooperative responses possible, as
well as strengthening the expert's hand at interpreting anaphora or ellipsis or other
ambiguous or ill-formed input.

This predictability and coherence in human problem-solving strategy is
markedly different from the strategy one might imagine for a computer problem-
solving program, where the ordering constraints might be very different. An
automated reasoner could be programmed to ask at each stage the query that would
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contribute the fact most useful at that point to the plan-building process, regardless of
its degree of connection with the previous query. Such a strategy might well seem
optimal from the computer's point of view. However, that random strategy makes
much more difficult exactly that tracking by the expert of the user's goals that we are
modeling here. Only a database system that made no effort to track pragmatic context
would be comfortable as the expert serving such an agent. Experience with expert
diagnostic systems has born out this demand on the part of human beings who are
trying to track the progress of the agent's plan building; systems like MYCIN [49] that
were first programmed to ask their queries in this random style where the next query
was the one most useful to the computer's diagnostic process proved so frustrating to
their human informants, who were trying to impose a logical problem-solving
organization on the sequence of queries, that their control structures had to be modified
to enforce that sort of coherence. A theme of this current research, of course, is that
even computer systems answering the questions of problem-selving agents depend on
the agent's adopting a coherent exploration strategy in the metaplan trtc in order tn
track the agent's goals and respond cooperatively. And that pattern of coherence n ist
not only be abstractly logical, but also conventionally understood.

The tree-search heuristics in Pragma model this depth-first exploration
pattern for plan feasibility by giving a high weight to subplans and subactions beneath
the current node, a higher one than for moves to consider siblings to the current plan,
and those in turn a higher rating than moves which lead through ancestors further back
on the tree than the parents of the currcit plan. These weights are assigned by a family
of h-rules including the default-downward-subplan h-rule shown earlier that alter the
weights assigned to nodes away from a strict breadth-first strategy in favor of one that
captures this sort of depth-first coherence. Each of the rules assesses a cost for an arc
by decrementing the score derived from the previously-explored node by a small fixed
amount before assigning it to the new node. Embodying the heuristic that the agent is
most likely to pursue a subplan of the current plan, the default-downward-subplan
rule uses the smallest decrement of any of these default tree distance rules, a factor of 5
in the 100 point scoring scheme, since it merely represents a further specification in the
agent's domain plan of the class of plans being considered. The
default-downward-subaction h-rule shown in Figure 7.2, which models a change in
the agent's focus from a class of plans for a particular goal to plans for one of the
constituent actions shared by the plans in that class, represents a more significant step
and carries a decrement of 10.

(def-h-rule default-downward-subaction (?node)
conditions ((subaction-of ?parent-node ?node)

(node-score ?parent-node ?parent-score))
actions ((inc-score ?node ?parent-score)

(dec-score ?node 10)))

3 Figure 7.2: Default-Downward-Subaction H-Rule

While the low costs of subplan and subaction arcs represent the greater
likelihood of the agent continuing to consider the plan class currently in focus,
relatively higher costs are charged to exploration paths that move up from the current
node to consider alternative plan classes to the one currently in focus or their subplans
or actions. The default-upward-expansion rule itself assesses a decrement of 5,
which is in addition to the inherently longer search path in the metaplan tree required to
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reach such nodes. The net result of these varying costs is tc direct the search of the
metaplan tree following the typical depth-first pattern so as to explore first those areas
that the agent is most likely to consider next, given the current context.

This kind of coherence in human problem-solving activity has naturally been
observed and made use of in previous plan-tracking systems, which make the same
double assumptions about the plan tree as a model for logical relatedness and
relatedness as a predictor for follow-on queries. For example, Carberry's TRACK
system [101 includes rules that embody exactly these heuristics for a depth-first
problem-solving approach, only moving on to other subproblems or more distantly
related possibilities when the current one has been sufficiently explored. A key
advantage of using domain plan trees as a model has always been their ability to
predict problem-solving behavior, an ability that stems directly from their exploitation
of this heuristic. The difference in this current approach, however, is that here the
measurements of coherence are defined on the metaplan tree of problem-solving plans,
rather than directly on the domain plan tree, and this significantly improves their
predictive power, since the metaplan tree reflects levels of logical organization in the
problem-solving behavior that are not modeled in the domain-plan tree. That
advantage becomes the key in the next section, where we show how particular
problem-solving patterns other than the default depth-first exploration can be handled
in the metaplan context because the metaplan tree can capture the agent's alternative
problem-soiving organization, introducing structure that shows the close logical links
between queries that would otherwise appear widely spread in the metaplan tree.

7.2.1.3 Representing Alternate Problem-Solving Patterns in the Tree

The previous section on the typical problem-solving strategy of agents using
expert advising systems presented heuristic rules that implement the strategy found in
the set of metaplans that describe the plan-building activity of an agent whose goal is
merely to find a feasible plan. The standard set of heuristics based on the
*build-plan* metaplan with its *build-subplan* and *ask-pred-.alue* children
represents a problem-solving strategy whose aim is to identify any complete plan for
the given goal. That is why, within a single goal, further exploration of a partially-
explored branch is heuristically preferred, and why, except when a precondition query
has received a negative answer, queries about other alternative subplans are
heuristically discouraged.

While that strategy is the default, there are other strategies for problem-
solving that take a different approach, where the agent intentionally explores multiple
possible paths in order to evaluate their costs and thus be able to choose the cheapest or
most beneficial option. Those evaluative strategies sometimes select a single criterion
to measure from each plan possibility, like a naval planner testing each option, say,
shipping spare parts vs. replacing the vessel, to find the one that will get the damaged
vessel's task force back into operation with the least possible delay. Other evaluative
strategies call for comparing the different plans point by point on multiple features, as
if constructing a table comparing the options. As described in Section 6.6, these
evaluative strategies are encoded first in the *evaluate.plan* metaplans, which
function like *build-plan* to create plan tree structure and to match user query input,
but which are not heuristically favored except when particular circumstances in the
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discourse cause the heuristics to activate them, and that section also outlined mtaplans
to capture higher levels of structure in evaluative strategies like comparing plans. This
section discusses the exploration patterns :hat go with these evaluative metaplans and
the heuristic means used to activate them in the cases where they apply.

Given the definition of the *evaluate-plan* set of metaplans, the first job of
heuristics is to activate these unusual strategies in and only in the appropriate
circumstances. The alternative strategy metaplans are usually not explored because the
default heuristics assign them much lower scores than the standard continuation
metaplans. For example, the default heuristic rule that activates *evaluate.plan* from
a *build-plan* base in Figure 7.3 assigns it an initial weight of only 20% of that of the3 *build-plan* node.

(def-h-rule default-eval-plan-from-build-plan (?node)
conditions ((node-ps-plan-name ?node evaluate-plan)

(node-parent node ?parent)
(node-ps-plan-name? parent build-plan)
(node-score ?parent ?parent-score))

actions ((set-score ?node (* ?parent-score 0.2))))

Figure 7.3: Evaluate-Plan-from-Build-Plan H-Rule

In spite of the low initial score given this metaplan, it is usually easy for the system to
identify *evaluate-plan* queries because the assertion involved in the query is not one
of the domain plan's preconditions, but instead involves one of the set of evaluative
functions that is stored with each domain plan. For example, while the readiness of the
replacement ship is coded as a precondition of the replace-ship plan, it's rate of fuel
consumption, which affects the cost it will incur in sailing to join the task group of the
damaged ship, is not listed as a precondition, but is still a function of the plan that
becomes relevant when the user wants to compare the cost of this plan with that of
other feasible plan options. Thus, the initial activation of the *evaluate.plan*
metaplans usually happens automatically in the search for a query node match, since
only the query nodes attached to *evaluate-plan* nodes can match with these
evaluative predicates.

While the primary way the model can recognize evaluative contexts is
through queries about evaluative predicates, it is also possible for particular patterns of
query behavior themselves to alert the heuristic component to the likelihood of3evaluative queries. For example, a series of queries about preconditions within one
subplan that all succeed suggests that the user has discovered a viable approach, and
that she will next look for plans for other required actions, rather than at other
alternative subplans for this apparently successful goal. If the user continues to ask
about other possible plans after seemingly establishing the feasibility of one, the
system can recognize that the agent is not following the normal plan feasibility pattern,
and one of the consequences of that is to increase the likelihood of evaluative queries
about those two subplans. Thus if a user who has explored the use of one replacement
vessel with apparent success (in that all queried preconditions succeeded) goes on to
explore another, a special heuristic can detect the exploration of a second sibling to a
successful branch with the effect of increasing the ranking of evaluative metaplans for
those plan branches.

I
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Once the model has tracked the presence of an unusual problem-solving
strategy like *evaluate.plan*, the heuristics can then take account of that in the
rankings for further continuation queries. Thus, once the current node is an instance of
*evaluate-plan*, the following two heuristics then work to give high scores to
*eval uate- plan* nodes for sibling plans.

The first such evaluative pattern heuristic gives a boost to *ealuate-plan*
nodes on alternate subplans to the current plan, as shown in Figure 7.4.

(def-h-rule eval-plan-sibling-build-plan (?node)
conditions ((node-score ?node ?node-score)

(node-ps-plan-name ?node evaluate-plan)
(node-parent ?node ?parent)
(node-parent ?sibling ?parent)
(node-ps-plan-name ?sibling

evaluate-plan)
(not-equal ?sibling ?node)
(node-score ?sibling ?sib-score))

actions ((set-score-to-max ?node
?node- score
(- ?sib-score 10))))

Figure 7.4: Evaluate-Plan-Sibling H-Rule

The set-score-to-max operator here has the effect of increasing the score for the node
assigned so far by the default tree exploration rules, if lower, to 10 less than the score
of the *evaluate-plan* node for the sibling.

The second heuristic of this sort, shown in Figure 7.5, handles cases where
the alternative node to receive the boost is an alternate instantiation of a variable from
the current pian. In this case, the score of the current noce is brought up if necessary to
15 less than that of the equivalent *evaluate-plan* node in the already-explored
branch with the other variable instantiation. The effect of these two h-rules is to have
the scores for *evaluate-plan* nodes carry over to other *evaluate- plan* nodes that
are more closely related to them by the evaluative pattern than would be apparent from
the metaplan tree suacture itself, modeling the typical use of these evaluative plans in
choosing between alternate feasible plans.

The metaplans discussed at the end of Section 6.6 that attempted to capture
higher levels of structure in the agent's evaluative problem-solving would also require
matching heuristics to model the appropriate exploration strategies. As with
*evaluate-plan* itself, the default heuristics working from the *build-plan* tree
would initially discourage moves from there to evaluative contexts like
*compare-plans*, but once an evaluative context became established through a
sequence of queries, the heuristics would encourage further exploration within that
context. Thus, for *compare- plans*, the initial move from one alternative to another
is tracked by the usual path up through the *build-plan* node and down the alternate
branch to the other plan or variable instantiation. While that first move is tracked by
the normal plan-building heuristics, is also causes a *compare-plans* metaplan to be
set up linking the two. From then on, because of that new comparison node, the
heuristics in further searches will favor continuing exploration of the comparison.
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(def-h-rule eval-plan-alternate-instantiation (?node)

conditions
((node-ps-plan-name ?node evaluate-plan)
(node-score ?node ?node-score)
(node-parent ?node ?parent)
(node-parent ?parent ?grandparent)
(node-ps-plan-name ?grandparent instantiate-var)
(node-parent ?grandparent ?greatgrandparent)
(node-parent ?greatuncle ?greatgrandparent)
(node-ps-plan-name ?greatuncle instantiate-var)
(not-equal ?greatuncle ?grandparent)
(node-parent ?uncle ?greatuncle)

(node-parent ?cousin ?uncle)
(node-ps-plan-name ?cousin evaluate-plan)
(node-score ?cousin ?cousin-score))

actions ((set-score-to-max ?node
?node-score3 (- ?cousin-score 15)))

Figure 7.5: Eval-Plan-Altemate-Instantiation H-Rule

1 7.2.2 Predicting Plan Tree Grosth from Agent's World Knowledge

While the default hcuristics presented in the previous section controlled the
search by means of distance in the metaplan tree and by means of particular problem-
sol ing patterns as modeled by the inetaplans, the heuristics described in this section
are intended to take advantage of situations where the expert is able to predict
something about the agent's knowledge and where that prediction changes the default
probabilities for the particular metaplans in question. Teic heuristics can therefore
help predict the likelihood of particular metaplanning actions in particular
circumstances.

Like the plan tree shape heuristics, these agent's world knowledge heuristics
also depend on the metaplan model's predictions of which queries can coherently
follow from a given context. While the tree-shape heuristics from the previous section
weight the nodes in the tree by distance trom the culltit node, adjuILC, for problem-3 solving pattern, these heuristics add a relative ordering to the possible nodes at a
particular branch point in the tree based on the expert's understanding of the agent's
world knowledge. Like the default tree distance rules, these rules are also coded as
condition-action rules whose firing changes the heuristic score of that node. Their left-
hand sides can test the usual features of particular metaplanning contexts like which
metaplans are active at that particular node or at its neighbors or ancestors and the
assertions that are relevant to those metaplans, but the left-hand sides of these rules can
also test assertions against a model of the agent's world knowledge, to determine
whether the expert does or does not ha'e reason to believe that the agent is aware of5 the truth or falsity of that particular assertion.

A good model of the agent's world knowledge can add substantially to an
expert's ability to track the agent's plan-building process in a fluid and cooperative
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,nanner. Such an individualized model of the agent's world knowledge allows the
expert to customize the planning model, enabling more accurate and efficient
prediction of the agent's most likely moves. Examples of this can be seen in human
interactions when planning assistance is given by a person who knows the agent well
enough to be able often to predict exactly which subplans will be considered and which
queries asked. A large part of this expertise comes from a well-developed model of the
agent's domain knowledge, allowing the expert to predict accurately which possible
plans will seem feasible to the agent as opposed to those she will know are not
possible, and which preconditions for those possible plans the agent will not already
know the status of and thus will be likely to query.

Because of the brevity of the expert advising situation, such complete and
individualized models of agent knowledge are not possible. Because the expert is
assumed to be providing data to agents in relatively short, unconnected sessions, there
is no opportunity to develop over time a detailed picture of a pariicular agent's domain
knowledge. Thus, the heuristics in the following sections are based in general not on
carefully acquired facts about a particular agent's knowledge, but instead on heuristic
judgments about the likelihood of a typical agent knowing some special class of facts.
Of course there are cases where certain facts about the agent's domain knowledge will
become evident, even in the limited course of such a consultation, and these heuristic
rules do take appropriate advantage of such knowledge when it becomes available.

There are three classes of heuristics that use predictions of the agent's world
knowledge to influence the weights assigned to various metaplans, based on the kind of
metaplanning involved. One class uses predictions of the agent's knowledge about the
assertions that are preconditions for domain plan- referenced in the metaplan tree to
influence the rankings of the plan-building metaplans applied to them, the
*build-suhplan* and *build-subaction* plans. The second uses similar predictions of
the agent's knowledge to influence the rankings for query metaplans growing out of
those subplan and subaction metaplans. The third uses predictions of the agent's
knowledge about the size of the set of possible fillers for an open variable in a plan to
control the rankings of the variable instantiating plans and their queries. These three
classes are discussed in succeeding sections, after some further introductory sections
that consider the different classes of agent world knowledge that the system tries to
model for use by these classes of heuristics.

7.2.2.1 Agent World Knowledge vs. Plan Knowledge

In this section, we begin to characterize the agent world knowledge accessed
by this class of heuristics by contrasting it with the world knowledge embodied in the
plans. While the metaplan model does as~unie that the agcnrt shares with the expert the
same definitions of the possible domain plans and of the preconditions that apply to
those plans, it makes no assumptions about the agent's knowledge concerning the
actual truth of those preconditions for particular arguments. For example, the model
does assume that a registering student knows that getting a B.A. degree requires getting
credit for a certain number of courses and that getting credit for a course usually
requires enrolling in it and attending the classes, but it does not assume that the student
would know what particular courses were being offered this semester, which had space
available, or what their meeting times were.
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The metaplan model's assumption of the agent's ignorance about the state of
the world is what allows it to model that the agent might pursue any plan that the plan
definitions themselves would allow for in any world state, and might ask queries about
the truth of any of those preconditions or possible variable values. That default
assumption of across-the-board ignorance is modified by the heuristics presented in
this section so that the exploration of the metaplan tree can be directed toward those
subtrees that the agent is more likely to pursue given this newly-added knowledge or3 set of assumptions on the expert's part about the state of the agent's world knowledge.

Before going on to discuss the agent world knowledge model that is added
for these heuristics, it is important to say a bit more about the implicit world
knowledge model included in the assumption that the agent has perfect knowledge of
ihe plans and their preconditions. This is a simplification that will have to be relaxed
mn later work, since there are clearly cases where the agent is unaware of a precondition
of a plan, like a student who thinks she is ready to graduate but has forgotten to file an
application for the degree. There are also cases where a planning agent using an expert
advising system may ask queries that, as formulated here, would be queries about plan
preconditions rather than about the facts of the domain, like a student asking how many
course credits are required, so that the agent's knowledge of the plans can even become
something that must be modeled explicitly in order to explain the query behavior. A
model of plans in terms of user beliefs is required, as Pollack [41] has pointed out, to
be able to handle cases where the agent's knowledge of the plans is faulty or
incomplete.

IIn fact, Pollack's treatment of plans as beliefs draws attention to the general
fuzziness of the line between plan preconditions and domain assertions, where alternate
formulations of the same domain might well encode the same fact in alternate ways.
The number of courses required for a degree program, for example, could either be
included directly as part of a get-degree plan in tht precondition (courses-required
15) or it could be represented as an assertion about the state of the world,
(courses-required ?degree-program ?course-count). The allocation of data to plans
or to world assertions, therefore, is always somewhat arbitrary, although the former
choice implies agent knowledge v. hile the latter leaves that question to the agent
knowledge model. Thus the precondition/assertion distinction embodies useful
predictions about the agent's knowledge, with the data coded as plans being that which
is more stable and basic to the domain, and which thus can reasonably be assumed to
be part of the agent's initial knowledge. The model presented here follows this
traditional and useful distinction between plan and world knowledge, assuming that the
knowledge coded as plans is part of the agent's initial knowledge. While relaxing that
assumption would allow plan elements to be questioned, a strong heuristic bias would
then need to be encoded representing the much greater likelihood of the agent's
querying assertions rather than preconditions, making the resulting model not as3 different in practice from the one presented here as might at first appear.

The central concern in this section, however, is not with the standard
metaplan model's assumption about the agent's full knowledge of the plans in the
domain, but with extending that model's assumption that the agent does not know any
of the facts in the domain by adding heuristic judgments based on the relative
likelihood of the agent's knowledge of the different sorts of facts that are coded as5 assertions. Note that the metaplan model itself lumps all such non-plan data together,

95I



BBN Systems and Technologies Corporation Report No. 7047

and makes no assumptions about the comparative likelihood of the agent's knowing the
different facts. The metaplan model itself cannot depend on the agent's level of world
knowledge because the expert has no way of knowing in geneal which preconditions
the agent does know and which not. Since the expert's best indications in this setting
about the agent's world knowledge are usually only probabilities, their influence on our
model of problem-solving actions is as heuristic rules, rather than by being built into
the metaplans thcmselves.

7.2.2.2 World Knowledge Relevant to the Planning Model

We pointed out at the begi, ning of this section on world Knowledge how a
model of the agent's knowledge about the facts relevant to building the plan allows the
expert to predict more easily which branches of the plan tree the agent will need to and
choose to explore. In this anu the following sections, the issue is identifying which
classes of knowledge about the agent's knowledge are both most useful in controlling
the growth of the metaplan tree and are also practically speaking available to the expert
in the expert advising situation. The point is to select those classes of agent world
knowledge that will be most directly useful to the heuristics presented in later sections.

Even leaving aside the plan knowledge, which we will continue to assume
the agent krcws and knows correctly, there are various classes of agent world
knowledge which could be modeled and which would be helpful in predicting the
agent's problem-solving moves, but the Pragma model only attempts to capture the
agent's knowledge of assertions that are directly relevant to the plan feasibility core of
its metaplanning model. Thus the heuristics currently only make use of a model of the
agent's knowledge about those facts that are immediately relevant to the process of
constructing the metaplan tree, either formulas that are preconditions to domain plans
in that tree or ones that determine the existence of possible fillers for open slots in
those plans.

There are other kinds of agent knowledge not modeled here that would also,
though less directly, affect the building of the plan tree by causing the agent to prefer
one plan branch to another. The major such class of interest here is the evaluative facts
that agents use in assessing the comparative cost of different plans and in choosing the
optimal one. The only approach to capturing these evaluative facts in the model is
their use through the *evaluate-plan* subtrees in predicting possible evaluative
queries. To allow for that prediction, sets of assertions known to have important
evaluative effects are stored with each of the domain plhns, as described in Section 6.6.
However, a full representation for such evaluative world data would require capturing
what the implications of the different factors are, and what algorithm is used to
compare and combine them, rather than just their current database values. Not only
would this substantially complicate the model in general, it would also greatly increase
the amount of knowledge that the system would require about each particular agent in
order to be able to make any predictions about likely problem-solving moves. Fully
modeling the agent's evaluative process would require a model not only of the agent's
knowledge of the facts of the domain, but also of the cost functions the agent is using
to assign values to the various outcomes, something that varies more from agent to
agent than the fact and plan model does and that thus is even less likely to be
discernible to the expert in the expert advising setting. Since the metaplan model of
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plan evaluation itself does not yet support that level of detail, it does not make sense to
try to model such facts in the world knowledge model.

7.2.2.3 World Knowledge Not Requiring Deduction

I Another kind of agent knowledge that is not modeled is knowledge whose
bearing on the current goals and plan tree is conditional upon deduction from other
principles or upon combination with other interacting goals and plans. The system
only models the agent's knowledge of the literal preconditions that appear directly in
the active plans. While some facility for dealing with the influences of implied or
contingent facts is clearly an important extension to the system, such additions will
also greatly increase the complexity of identifying agent world knowledge effects on
metaplanning, so that it will never be feasible to recognize all the deductive

I implications of a given piece of agent knowledge.

One example of agent knowledge that does require outside facts to establish
its relevance to the current planning situation comes from assertions governing the
agent's other plans and goals, some of which may interact with the current goal in a
way that affects the likelihood of the different possible problem-solving actions.
Because of differences in interacting plans, the cost functions of planning agents can be3 different even if they are confronting the same current situation with the same
knowledge and goals, since the impacts of this plan choice on other unrelated plans and
goals may be different. Thus a naval planner may in fact choose to send a distant ship
to replace the damaged one if she is aware of another goal to build up the fleet in that
area by transferring vessels from other areas, since the actions for this othe- goal
overlap those for replacing the damaged ship so that the action's comparatively high
cost from the perspective of the replace-ship plan is made up for by its benefit in the
balance-forces context. Because our planning model currently has no way of
representing these possible interactions between the focused plan and the user's other
plans and goals, it does not attempt to account for other plans that the agent might 'v
involved in, and which she might be trying to coordinate with the current plaj
Neither, therefore, does the heuristic component attempt to capture the agent's worlP
knowledge about all the other plans that might interact with the current plan and thw
affect the agent's evaluations.

The choice here to restrict the modeling of the agent's knowledge to classes
of knowledge that directly affect the building of the plan tree was made both because
that kind of knowledge was more directly useful in the heuristics and because it was
easier to set up a model for the agent's knowledge of assertions that are already known
to be relevant. As the metaplan model itself is extended to cover interacting plans and
to model finer degrees of preference in place of binary feasibility for particular plans, it
will be possible to make heuristic use of models of the agent's knowledge that support
those features. For example, if there are two errands like buying milk and going to the
library that could either be executed separately or combined, it might be that a strong
preference for getting the milk home quickly might overcome a weaker preference for
not making an extra trip downtown. The result of such an expanded heuristic system
would be that the order in which plan branches would be explored would be sensitive
to the relative preferences assigned to the combined outcomes.

I
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7.2.2.4 World Knowledge Available in the Setting

Even as it becomes possible to extend the power of the problem-solving plan
model to handle phenomena like evaluative choice between plans and the influences of
one plan on another, there will still be the question of whether the setting in which such
an expert operates would provide enough information about the agent's knowledge in
these more contingent areas to be useful heuristically in directing the plan modeling.
There are many settings in which no such detailed data about the agent's knowledge is
available, so that only general and direct heuristics of the sort presented here can in fact
be used.

Of course, even a greatly extended metaplan and agent's knowledge model
still would not allow the expert always to predict exactly which paths the agent would
explore in which order, both because it will not be possible in general to insure that the
expert's model is enough like the agent's in the weights that it assigns to the different
factors to be sure that the same branch would be scored highest in both models and
because human agents do not always behave logically. The eventual goal, therefore, is
not necessarily exact prediction, but the kind of smooth and effortless plan tracking
leading to cooperative problem-solving responses that we see in human expert
behavior, where the amount of effort expended in prediction is efficiently tuned to take
maximal advantage of the data available about the agent's plans and knowledge in
order to maintain enough of a model to steer the expert's responses in the most helpful
direction. It even seems that human experts adjust the effort devoted to plan tracking
based on need, so that more effort will be expended, even with poor data about the
agent's goals, if there is a choice of plan matches that strongly affects what response
the expert should give, while even strong data about the agent's goals and knowledge
need not be followed far if the plan path is obvious without it.

Although that sort of powerful and flexible model of the agent's knowledge
is the eventual goal for supporting cooperative interaction, the nature of the expert
advising setting, as mentioned before, places severe limits on the amount that the
expert is likely to know about the agent's knowledge, since the interactions are
assumed to be fairly brief ones in which the expert does not have time to develop a
detailed model of the agent. Thus it is not an unreasonable strategy in this context to
settle for a simple model of the agent's knowledge and for straightforward heuristics
applying that model to controlling the search in the plan tree for links to the succeeding
query.

7.2.2.5 The Agent World Know, ledge Model

We have already shown some of the complexities involved in determining
which portions of the agent's world knowledge are relevant and in acquiring a model
of the agent's knowledge in those areas. The particular model developed for Pragma
relies on a combination of two approaches for modeling agent world knowledge, a
default model acquired initially with the domain knowledge containing assertions of
belief and disbelief that are expected to apply to all agents, and a set of particular
assertions about the current agent's world knowledge, assertions that have been
acquired in the discourse so tar and that augment or supplant the assertions in the
default model as appropriate.
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The default model is intended to to describe certain facets of the typical
agent's knowledge of the domain. Thus, assertions in the actual description of the state
of the world can currently be marked as ones that the typical agent can be expected to
believe are true, false, or unknown (the default). The set of those assertions with non-
default values in the agent knowledge model describe the beliefs about the state of the
world that can be assumed as the "common knowledge" of the great majority of users.
As we will see, if one of these "common knowledge" assertions directly contradicts a
precondition of a plan that the agent might otherwise be supposed to be considering,
then the heuristic component will downgrade exploration of that branch in the plan
tree. Similarly, heuristics based on "common knowlelge" assertions suppress the
exploration of whatever node in the plan tree would otherwise generate a query subtree
modeling a query from the agent to determine the truth of that assertion, since the
system assumes that it is already known.

In fact, the default model is implemented by means of a binary "commonly
known" flag attached to each assertion used as a precondition in any plan. If that flag
is set, it means that the logical status of that assertion, whether true or false, should be
considered to be common knowledge, while the flag not being set means that the
system makes no assumption about the agent's knowledge of that assertion. The
advantage of this encoding is that the agent knowledge model does not need to change
when the status of the assertion in the database changes; the disadvantage is that there
is no way to represent the anomalous situation where all agents are assumed to believe
that an assertion is true which is in fact false or vice versa, but it seems that that
situation can safely be ignored. It it still quite possible in this model, of course, for
particular agents to have incorrect beliefs about assertions assumed to be commonly
known, with the result that the heuristics will be misleading in those cases.

While the default model gives some control over the search space,
considerably greater power would be achieved if the system could maintain a separate
model for each agent's knowledge, rather than just relying on default tags attached to
the actual state of the domain as the best predictor for it. As a first step in that
direction, the system does record the current agent's beliefs about particular assertions
as they become clear in the course of the problem-solving dialogue. There are some
cases where the agent's knowledge can be predicted easily, based on facts the expert
has just revealed in previous answers. For example, where the default assumption may
first have been that the agent was not aware of a fact that makes a particular subplan
infeasible, a previous query and response may give evidence that the agent does now
know that fact, and thus is likely to abandon this branch of the planning tree.

The following is a more detailed example of such a heuristic, where the
previous dialogue establishes new data about this particular agent's world knowledge
that in turn is used to control the search of the plan tree. When the previous
interchange involved an *ask-pred-value* query tracked as arising from one of the
preconditions in a particular domain plan and the expert's answer to that query had
been negative, that answer adds a new element to the agent-specific world knowledge
model recording that this agent now knows that that precondition is false. That new
datum in turn affects the heuristic weights assigned to the plan tree nodes and used to
control the search for a match to the agent's next problem-solving move, since it
implies that the agent now knows that the current plan is not feasible in the given5 situation. Thus, while the default probabilities expect the agent to explore subplans
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and subactions of the current plan class first, in this case, that becomes quite unlikely,
and the alternative strategy of considering other related plan classes, ancestors of the
currently focused one, or their subplans or subactions correspondingly more likely.

Note that the agent knowledge model does not at the moment trace
knowledge deducible from other assertions in the agent knowledge model. This
includes even simple cases of the direct inverse of an assertion whose truth is known,
so that it is possible in this model to represent an agent who knows that the readiness of
the Frederick is Cl but does not know that its readiness is not C2. The plans involved
in test cases so far have not been complicated enough to require such a deductive
model of agent world knowledge, but it is clearly an area for further work to extend the
modeling of agent world knowledge to capture cases where the state of the agent's
knowledge can be deduced either directly from other facts about which the agent's
knowledge is known or by using them in combination with knowledge of dependencies
in agent world knowledge.

7.2.2.6 Effc,:ts of Agent's World Knowledge on Subplan Growth

In this and the following sections, we cover the different areas of metaplan
tree growth where the heuristics can make use of this model of the agent's world
knowledge to affect the weights for different exploration paths in the tree. In this
section, we examine the impact of the agent world knowledge model on subplan and
subaction branching. In the following sections, we will cover its impact on query
generation and variable instantiation. The first class of heuristics based on the agent's
world knowledge therefore deals with the effects of the agent's knowledge of the truth
or falsity of particular instantiated domain assertions on the growth of subplan
branches in the plan tree. In this section, we show how a model that can predict which
assertions the agent knows the truth of and which the agent does not know allows the
expert to tailor the growth and search of the metaplan tree used for plan tracking,
avoiding the exploration of branches that the agent will not consider and focusing on
those the agent is most likely to explore. The actual heuristic rules, as pointed out in
the previous section, are based for the most part on predictions about typical agents'
knowledge of classes of assertions, and they use those predictions to affect the weights
assigned to those metaplan tree nodes whose probability is somehow dependent on the
agent's knowledge of the particular domain fact.

In spite of the limitations on the information about the agent's knowledge
available in this model, important heuristic guidance can be obtained even from this
partial model of the agent's likely knowledge about the assertions in the domain that
are preconditions to the plans being considered. The main heuristic payoff is that
wherever a subplan contains a precondition that the agent can be assumed to know is
false, we can safely predict that the agent will not bother actively exploring that
subplan. Examples of this include both whole *build-subplan* branches ruled out by
some factor derived from the problem goal itself and particular *instantiate-var*
branches ruled out by some feature of the instantiating entity.

One example of the first type would be where an entire *build-subplan*
subtree would be ruled out due to some domain facts; in the damaged ship domain, an
example would be where the supply-by-helicopter subplan of supply-replacement.
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parts has a precondition that the receiving ship (already instantiated in this context as
the damaged ship) must have a helicopter landing pad. (Assume that the damaged ship
is far enough from the helicopter's base that the chopper must land and refuel, rather
than just dropping the part from the air.) A person planning for the repair of a ship
known to be too small to land a helicopter would not bother exploring other details of
that s branch.

In that example, the fact that blocked the subplan tree was a direct
precondition of the domain plan at its root; in general, the infeasibility of a subplan tree
may be due instead to a lower precondition, or to an arbitrarily complex combination of
precondition blockages at various levels. The heuristic rules given here, however,
ignore these more complicated cases, and will only block exploration of a subtree when
there is an immediate precondition of the domain plan at the node currently being
explored that the system believes the agent knows will fail.

I The h-rule form for examples like this is shown in Figure 7.6.

(def-h-rule block-known-failure-build-plan (?node)
conditions ((node-ps-plan-name ?node build-plan)

(node-domain-plan-name ?node ?plan)
(domain-plan-precondition ?plan ?pred)
(known-to-be-false ?pred))

actions ((dec-score ?node 80)))

Figure 7.6: Block-Known-Failure H-Rule

Its effect is to severely decrement the score of any *build-plan* node whose domain
plan as currently instantiated contains a precondition that the expert's model predicts
that the agent believes to be false, whether that prediction is due to the common
knowledge flag associated with that assertion or deduced from the earlier course of the
dialogue.

3 Another example of knowledge of a domain fact ruling out a certain subtree
of the plan tree would be where a particular variable instantiation creates a subtree with
an immediate precondition of the domain plan at the root that is known to fail. In such
cases, there is an h-rule that allows the system to downrate exploration of that branch
right at the *instantiate-var* node, without needing to explore the *build-plan* node
underneath it that would trigger the previous h-rule. The h-rule that catches these ill-

Ifated *instantiate-var* nodes is shown in 7.7.fatd *nstntite~ar noes s sowninFigure 77

(def-h-rule
block-known-failure-instantiate-var (?node)

conditions
((node-ps-plan-name ?node instantiate-var)
(node-domain-plan-name ?node ?plan)

(domain-plan-precondition ?plan ?pred)
(known-to-be-false ?pred))3 actions ((dec-score ?node 80)))

Figure 7.7: Block-Known-Failure-Instantiate-Var H-Rule

5 Note that the only effects on subplan growth stemming from agent world
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knowledge are restrictions that block off plan subtrees due to a precondition known to
be false. While this seems one-sided, it is because the default assumption of the
metaplan model is that the agent does not know the status of the world knowledge
assertions relevant to the current plan, and that default assumption causes the system to
search all possible branches of the plan tree, since all of them might seem possible to
the planning agent. That search space can only be trimmed when the expert knows that
the agent is aware of a failed precondition that blocks one of the subplan branches. On
the other hand, there is no direct effect on tree exploration of a precondition that the
agent is known to know will succeed. This point will be reconsidered, however, in
Section 7.2.3 on predicting domain plan choice statistically, since there agent
knowledge of successful preconditions can influence the default probabilities of
particular subplan paths when a path that is usually blocked by some failed
precondition and whose default probability is therefore low ends up being possible
because that precondition this time succeeds, and, more to the point, is known to be
known to the agent to succeed, so that the agent's knowledge of that successful
precondition causes the probability of that normally unlikely subplan branch to be
increased.

7.2.2.7 Effects of Agent's World Knowledge on Query Metaplans

A model of the agent's world knowledge affects the heuristic weights not
only of subplan branches, but also of branches based on query metaplans. In these
cases, data about the agent's knowledge of the world allows the heuristics to avoid
exploration of plan subtrees where the subtree's metaplan is a query plan whose goal
would be to discover some fact that Pragma already has reason to believe the agent
knows to be either true or false. For example, in the naval domain, it might be that the
basic status of the few aircraft carriers in the fleet would be an important enough fact
that any user of the information system would be expected to be aware of it, while the
status of the smaller vessels could easily have changed without provoking the uproar
that would ensue if a carrier were suddenly rated nonfunctional. If that were true and
the plan context were one in which the deployability of a carrier was one of the
preconditions, the system could make use of the agent's assumed knowledge about that
assertion to suppress the exploration of the *ask-pred-value* or *check-pred-%.alue*
nodes that could otherwise be built in searching for a match to such a query.

The h-rule for examples of this sort, where the agent is assumed to know that
a particular precondition is satisfied, is shown in Figure 7.8.

(def-h-rule block-query-of-pred-known-ok (?node)
conditions ((node-ps-plan-name ?node

(one#of ask-pred-value
check-pred-value))

(node-queried-precondition ?node ?pred)
(domain-plan-precondition ?plan ?pred)
(known-to-be-true ?pred))

actions ((dec-score ?node 80)))

Figure 7.8: Block-Query-of-Pred-Known-OK H-Rule

The effect here is to reduce the score of query nodes for assertions the agent is
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expected to believe already to be true.

The examples that typically trigger this heuristic in the Pragma system are
those like the above where the fact is a prominent enough one that it can be assumed
that the agent is aware of its status, whether it is true or false. Note that there is aI somewhat different sort of precondition whose truth the agent can be assumed to be
aware of because it is simply very rarely false. In an academic setting, for example,
there may be a pro forma requirement that the adviser approve all changes, in course
registration, but it may be so universally assumed that students weighing various
coursc3 of action do not consider the need for approval as a criterion to ask about. In
such cases, too, this heuristic correctly models that agents are not likely to ask about
such preconditions, since they have already assumed them to be successful.

The cases so far have all been examples where the precondition in question
was known for one reason or another to succeed. The complementary case where the
precondition is known to fail overlaps the subplan heuristics from the previous section,
since in such cases the subplan heuristic will prevent that subplan branch from even
being explored, so that the system will never get to the point of modeling possible
queries about preconditions within that branch. Thus the main application for this class
of heuristic will be in cases where the preconditions are known to be successful, when
the metaplan model will explore the plan branch but this heuristic will prevent that
particular precondition from being queried.

3 7.2.2.8 Effects of Agent's World Knowledge on Variable Instantiation Metaplans

This section presents a class of heuristics that exploit predictions of the
agent's knowledge about the probable size of the sets of possible fillers for variable
slots in the domain plans to control the weights given to the various possible variable
instantiating metaplans. The primary effect is to adjust the likelihood of *ask-fillers*
and *constrain-var* subplans depending on the agent's guess of the number of entities
in the domain that fit the specified constraints. For example, if the agent expects a
small set, she is more likely to ask for it to be listed in full, while if she expects a large
set, she will be more likely to add some constraints to cut down the set size before
asking for fillers. These heuristics thus test the actual size of the set in contexts with
open variables, taking that as a heuristic measure in turn for the agent's guess at its
size, and use that result to affect the relative weights given to *constrain-var* versus
*ask-fillers* plans.

The rule in Figure 7.9 implements one such heuristic, reducing the likelihood
of *ask-fillers* when the size of the resulting set would be larger than 30.

(def-h-rule reduce-ask-fillers-with-large-set (?node)
conditions ((node-ps-plan-name ?node ask-fillers)

(query-set-var ?node ?set-var)
(> (cardinality ?set-var) 30))

actions ((dec-score ?node 10)))

Figure 7.9: Reduce-Ask-Fillers -with-Large-Set H-Rule

The cardinality test applied to the ?set-var variable references the result of a
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computation carried out and stored when the parent *build-plan* containing the open
variable slot was first explored that tested in the actual database the number of entities
satisfying the constraints on possible fillers of the slot and attached that data to the tree
for heuristic use as a guide to the agent's sense of the probable size of that set. The
effect of the rule is to somewhat decrease the score for *ask-fillers* nodes when the
number of fillers is relatively large, with the cutoff here set to 30. A corresponding
boost is given to *constrain-var* nodes in such cases by the rule in Figure 7.10.

(def-h-rule boost-constrain-var-with-large-set (?node)
conditions ((node-ps-plan-name ?node constrain-var)

(query-set-var ?node ?set-var)
(> (cardinality ?set-var) 30))

actions ((inc-score ?node 10)))

Figure 7.10: Boost-Constrain-Var-with-Large-Set H-Rule

These heuristics are like those in the previous sections in helping to predict
the agent's problem-solving moves based on her assumed approximate knowledge of
certain facts about the domain and the implications of that knowledge for which
problem-solving strategies would be most useful. However, while those made use of
an explicit model of which assertions in the domain model could be taken to be the
cmmon knowledge of all agents or specifically attributable to the current agent, these

heuristics are based on a more general assumption that the agent has approximate
knowledge about the entities in the domain that can be predicted from the actual facts
of the domain, so that, for instance, while the agent might not know exactly how many
destroyers are within range, still she is likely, judging from the total number or the
number in the general area, to predict the value fairly closely. There are two reasons
not to maintain as explicit a model in this case as we did in the case of individual
assertions, first because it would be very expensive, since there are no individual
assertions to index on, but rather arbitrary combinations of assertions given the
particular plan context, and second because the agent herself, even if we had perfect
access to her beliefs, is likely to have only vague knowledge to support these
cardinality predictions.

The following list gives brief descriptions of other heuristics in this class that
apply to the set instantiating metaplans and that use the actual world model to predict
agent world knowledge. The actual h-rules for these heuristics are similar enough to
the example already presented that they are not given in full.

" *Ask-fillers* metaplans are only likely when the candidate list is short (as
in the reduce-ask-fillers-with-large-set h-rule given above).

" *Constrain-var* metaplans are more likely when the candidate list is long
(as in the boost-constrain-var-" ith-large-set h-rule above).

" *Limit-cardinalitv* and *sort-set-by-pred* metaplans are also more
likely when the list is long.

* *Ask-existence* ("Are there any...") queries are more likely when the list
is short.

* *Ask..cardina!* ("How many...") queries are somewhat more likely
when the list is long.
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e *Instantiate-var* queries are slightly more likely when the candidate list

is short.

* The existence of a single candidate (a cardinality of 1) encourages
*instantiate-var* and discourages *ask-fillers*.

I There is also some overlap between this class of heuristics and the following
in that the queries being selected among by these heuristics can establish items of agent
world knowledge that should be used in calculating the weights for other plari branches
in the future. For example, after an *ask-cardinality* query, the agent knowledge
model can be updated so that prediction of an *ask-existence* query for the same
variable will be suppressed.

7.2.2.9 Using Agent World Kno ledge Established During Consultation

I The previous sections have presented different sets of heuristics based on
assumptions about the agent's world knowledge that were established in general for all
users betore the problem-solving session began. We referred to the need for this to be
expanded eventually to allow for an ongoing model of the knowledge of each
individual agent, but pointed out that there is seldom opportunity for development of
such an individual model in the expert advising setting. Nevertheless, there are cases
where some facts about the agent's world knowledge become evident in the course of
an advising session, either because the facts have been direct subjects of queries or
because the course of the plan building allows zhe system to deduce the agent's
knowledge.

The simplest example of this, of course, is where the agent explicitly asks
about the value, which establishes from then on that the value is known. The Pragma
system records for each assertion that is the subject of a query that the agent is now
aware of it, and that fact will be used from theni on in I euristically ranking the different
search paths. For example, if a part-time student considering taking one course asks
about the location of the building it meets in, the agent knowledge model would
correctly predict that she would not need to ask the same question about a second

* course that she knew met in the same building.

One unusual example of this simple class comes when the assertion that the
agent asks about is one that was misleadingly predicted to be one commonly known.
That incorrect prediction will cause the system some trouble when it tries to match to
the query about that assertion, since these very agent knowledge heuristics will
postpone the exploration of the path that should match it, an analogue of the confusion
people have in understanding and tracking a query that contradicts their expectations
about the speaker's world knowledge. However, because the problem is with the
predicted agent knowledge of that particular assertion, these heuristics will work
against it equally wherever it appears in the plan tree, so that even though the desired
match will not be found as quickly as it otherwise would, at least no other instance of
the same assertion will match before the closest. There is in fact a secondary effectIhere that whenever the agent asks about a particular assertion, that in itself implies
strongly that the agent is not aware of the value of that assertion. (We do not in thisexpert advising situation consider examples where the purpose of asking the question is
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other than to discover the answer, even though such cases do arise in more complicated
discourse situations, where queries are asked to draw the expert's attention to a fact
that the agent already knows, or to mislead the expert as to the agent's knowledge.)
This example is not useful for future prediction, however, since the same interchange
that reveals the agent's lack of awareness also, with the answer, satisfies it, so that the
effect of a query for future prediction is always to reduce the likelihood of that
assertion being asked about again or of plans blocked by it being explored.

In addition to the simple cases where the assertion is queried directly, there
are cases where a query about an assertion on one metaplan tree branch may reveal the
agent's state of knowledge of another, for example, cases where the agent's lack of
knowledge of a particular assertion can become clear in a more roundabout way. In
cases where there is a precondition that the system judges is commonly known to be
unsatisfied, it predicts that agents will not explore that particular subplan branch. But
if, in spite of this expectation, the agent does ask a q.,'e :hat is suggested by that
subplan branch and that only matches there, then the system can conclude that its
original judgment about the common knowledge of the failure of the first assertion was
incorrect. In practice, this would be implemented as a post-process to *ask-pred-
value* that would check to see if any of the other preconditions of the queried plan
branch were currently recorded in the agent world knowledge model as known to be
false, changing their status to unknown.

Note that the Pragma system only takes account of new facts about the
agent's world knowledge in the cases listed here where there is a definite implication.
There are also cases where weaker, uncertain presumptions about the agent's
knowledge could be derived from comparing the course of an agent's plan-building to
the statistical expectations discussed in the following section. For example, if a
precondition on an initially-probable subplan is in fact false (and unusually so, given
the plan's general popularity), and an agent chooses not to explore that subplan or ask
any queries tracked to it, the system might be justified in presuming with some degree
of likelihood that the agent does know of the failure of that precondition, and that that
is why she is not exploring that particular branch. Thus a business traveler asking
about trains from Boston to Buffalo during a storm which has closed the Buffalo
airport for some time may be presumed to be aware of the unusual fact of the failed
precondition on the more typical plan of making the trip by plane.

The inverse case would also hold, where there is a generally unlikely branch
due to a precondition that usually fails, but the agent explores it anyway, without
querying the status of the surprisingly-valid precondition that makes that subplan
possible, which the system could take as presumptive evidence that the agent was
already aware of the precondition's truth. For example, a person who is stopped on the
street at 8:00 p.m. on a Sunday shortly before Christmas and asked whether the
department store on the next block would be likely to have a certain kind of sweater is
probably justified in assuming that the speaker recognizes that while such stores would
usually be closed at that hour, they are in fact open in that season.

Because such interactions between the agent world knowledge model and the
statistical predictions of likely plan explo, tions are necessarily more tenuous than
either heuristic alone, a full model of their effects on the probabilities of the separate
plan branches would be quite complex, and would require a sophisticated system for
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weighing probabilities and partial knowledge against each other. Thus the Pragma
system only models that fixed set of situations in which the course of the interaction
makes clear the agent's knowledge of the status of a particular assertion without
simultaneous reference to the statistical model.

I 7.2.3 Predicting Domain Plan Choices Statistically

The previous parts of this section have described classes of heuristics that are
based first on the shape of the metaplan tree and the particular patterns of metaplans in
the area being searched and second on the agent's world knowledge of assertions that
influence the likelihood of her considering particular plans. The first set therefore
helps to predict the agent's problem-solving style of moving around in the tree, and the
second predicts how the agent's choice of plans and queries is influenced by what her
world knowledge indicates is feasible. In this section, we ccnsider a third class of
heuristics of a rather different sort that help to predict the agent's choice among the set
of domain plans that are all apparently feasible. It is often true, for example, that a
given plan class node will be realized much more frequently by means of one subplan
class than another. For example, most students pursuing an earn-credit-in-course
plan do so by means of its take-course subplan rather than by means of
transfer-credit. Therefore, that path is the sensible one for the expert to explore first3 in predicting likely follow-on queries in an earn-credit-in-course context. Because
the system does not have access to a detailed enough model of the agent's goals and
preferences to predict the most likely choices of each particular agent, a statistical
model of subplan and subaction feasibility collected from analysis of a sampling of
typical problem situations is used instead.

The choices modeled by these statistical heuristics are those on which the
more direct methods from the previous section have no bearing because no common
knowledge assertion exists to make the distinction. For example, the
supply-spare-part-by-helicopter plan depends on the presence of a landing pad on the
damaged vessel, an assertion whose truth or falsity is marked as common knowledge.
Therefore, if that assertion is in fact false for the actual class of vessels that includes
the damaged one, the expert can predict that the agent is likely to know that, and, since
we assume that the agent is aware of all the preconditions for the different plans, the
expert can also predict that the agent will not bother exploring that path. However,
consider the difference between the plans supply-spare-part-by-frigate and suppls-
spare-part-by-battleship, both subplans of supply-spare-part-b-s essel. There is no
commonly known precondition to either plan that blocks its consideration; that is
differeit frn'm saving that both are definitely feasible, since there may in fact be no
vessel of that type able to make the supply run, but at least neither one is prima facie
impossible. Thus the agent knowledge heuristics as formulated in Pragma are not able
to distinguish between the two. But there is nevertheless a major practical difference,
because one is much more likely to use a small ship like a frigate for a spare part
supply run than to redirect a battleship with all of its support vessels. Yet the reason
for that is due to the comparative costs of the two options, rather than to any inherent
impossibility. One option for capturing that difference would be to model directly the
cost function for the different alternatives, but that would require a much more
complicated domain model than Pragma at the moment supports. Therefore, the3 current approach is to use statistics collected from previous experience with the plan
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tree as a guide to which plans are likely to be preferred by agents in cases where no
common knowledge assertion distinguishes between them.

In earlier work [42], we suggested and explored a way of using statistics
gathered across many uses of an expert problem-solving system to derive at each node
the re!ative probabilities of success for each of its children. The trees in that work were
AND/OR solution trees representing boolean combinations of preconditions (AND
nodes) and alternate plans (OR nodes), and the statistics in that system were colletted
by testing the full tree of possibilities against the world situation of each previous user,
recording at each tree node its success or failure given that situation, and thus
collecting statistics that described the general probability of success at each node.
These probabilities were used to predict the agent's likely focus of attention in
searching for -solution subtree in a new situation. Where there were alternate plans
(OR nodes), the heuristic expectation was that the agent would be likely to explore first
the branch that had the greatest average likelihood of success, so that a high statistical
success rating there predicted also a high chance for initial exploration. On the other
hand, where a node involved an AND combination of preconditions, it seemed that the
agent's motivation was to explore first the path least likely to succeed, since a single
failure would mean the entire node was infeasible, and starting with the branch most
likely to fail tends to minimize the time wasted exploring nodes that will eventually fail
anyway. Thus for OR nodes, it was a low statistical success rating that predicted a
high chance for initial exploration.

With some adjustments, the same statistical approach could be added to the
heuristic component of the Pragma system, using the *build.subplan* nodes as OR
branches and *build-subaction* nodes as A.NDs. Because an expert advising
interaction does not usually explore the entire tree, the statistics would need to be
collected by applying the metaplan tree for known top-level goals to a sequence of
world models representing various realistic situations, and allowing the feasibility
judgments to percolate up the tree. Note that because the domain plan classes for the
metaplan tree are in part dependent on the world state since that is what determines
which sets of action sequences will share certain sets of effects, this derivation of
statistical scores would be dependent to some degree on the problem situation, but
given the generic plan classes usually of interest, this does not pose a significant
problem.

The feasibility probabilities thus derived would add a finer degree of
heuristic control than can be accommodated in the common knowledge approach.
They would implement the heuris-,t(s that an agent when presented with a choice of
plans will tend to explore first the plan that is most likely to succeed, while when
considering a plan with a set of required actions, will explore first the action which is
most likely to fail. For example, in the damaged ship context, replace-spare-part will
presumably be the subplan of restore-damaged-ship-readiness that has been
employed most often in previous problem-solving at this node, so that the expert can
predict that that is also the most likely subplan for the agent to explore first in this case.
On the other hand, within the replace-spare-part plan, the action for transport-part-
to-vessel may be the one that most often fails, so that once the agent has selected that
plan for exploration, the expert can expect her to test the feasibility of that action
before testing other-,
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N An alternative possible use of heuristics that might be explored in this
context, taking advantage of the richer context model available in Pragma, would be
one that recorded information about not just the problem situations of previous users,
but also about their plan exploration patterns. In that case, Lhe statistics to collect
would be ones reflective of the subplans and subactions that agents have tended to
explore first, rather than those that would have turned out to be feasible if explored.
Such statistics would take longer to collect, but would be able to handle a situation
where there is an undesirable but almost always feasible solution whose frequent
feasibility suggests its early exploration while its undesirability means that agents in
fact postpone consideration of it as long as possible. Walking home from school might
be an example, where rides or buses would be first considered, though less often
feasible. Statistics based on the actual plan exploration patterns of previous agents
would allow such preferences to be more directly modeled.

However, either of these approaches to statistical heuristics suffers f'om
needing to judge automatically which sets of situations are closely enough related that
their statistics should be suggestive for each other. With the statistical feasibility

heuristics, this arises in the picking of situations to derive the scores, while in the
exploration pattern cases, it comes up in knowing how to adjust the pattern data to
account for the different situations faced by the different agents. A more powerful
method than either one lies in expanding the effective modeling power of the metaplan
model to handle the factors which are causing the plan preference so that they can be
modeled directly and explicitly in the metaplan model and in the agent knowledge
heuristics, as the feasibility criteria now are. That approach seems to offer in the long
run a more adequate and useful model than any based on statistics of previous runs.

7.3 Heuristic Control from the Query Parse

All of the heuristics in the previous section (Section 7.2) are based on
features of the pragmatic context, whether details of the metaplan tree structure, agent
world knowledge from previous utterances, or statistical measures of the plans in
previous use, all of which are independent of the actual query that the system is
currently trying to match. In this section, we discuss the kinds of heuristic guidance of
the search that are available by using instead the description of the query to be
matched. The basic approach, of course, is to boost the scores of branches in the
metaplan tree that do contain elements needed for a match with the query, and suppress
those that comparison to the query shows will not be able to match.

The one example in the system of a positive heuristic of this type is one
which boosts the score of an *insta...te -var* node when th, value to which the free
variable is being instantiated is one that also occurs in the partial representation of the
query. For example, if the query was

Where is the Fox?

the replace-ship node in the tree for replacing the damaged vessel could spawn many
*instantiate-var* branches, each representing the consideration of a different possible

value of ?rship. The particular branch which explored the instantiation of ?rship as
the Fox would receive a substantial boost in heuristic score from this rule. Not only
does this represent the greater probability of a match for that branch compared to its
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siblhigs, which instantiated ?rship to a value that does not occur in the query, but it
also models the generally increased interest for the search as a whole in a branch that
has dicovered a slot in the plan that may explain the occurrence of that given value in
the query.

The other uses made of information about the query being matched are
examples that cut off search paths that can be shown to have no possibility of matching
to that particulai- query, based either on the query operator or on the set of assertions
available. For an example of the former, a query like

What is the course of the Vincent?

is represented using an ask-value query operator, and that operator is only introduced
into the metaplan tree by the *ask-pred-value* metaplan. Since the query-generating
metaplans are mutually exclusive, with only one occurring on any one branch in the
tree, the other query-generating metaplans like *check-pred- value* and *ask-fillers*
need not be expanded in this particular search, since they will certainly not provide a
match. In the same way, we can see that the query-generating metaplans do not in
themselves contribute assertions to the pool that can match those found in the query.
Thus, the system can test for the possibility of a match between the *build-plan* node
itself and the query descriptions. If the assertions from the query (ignoring the query
operator) can be matched in the context of the *build-plan*, then it makes sense to
explore query-generating branches from that node, but if there is no match there, then
the search can be cut short there, unless one of the *constrain-var* metaplans will be
able to introduce the missing constraints. Thus a pre-match test at the *build-plan*
node itself can provide strong direction to the possible fruitful query-generating
branches at that node.

These heuristics that suppress plan tree branches based on information from
the query are not coded as h-rules affecting node scores but are instead written directly
into the tree ex'nloration code, both because that method allowed easier coding of these
fairly complex tests and because the results of these heuristics when negative
effectively prevent further exploration of that branch, rather than just partially
downrating it. (The justification for still calling these heuristics will be clear when we
see the effect of applying them when there is only partial knowledge of the query
form.) Nothing is lost in not factoring these into the heuristic calculation of the score
of a node, since these heuristics only prevent exploration of nodes that would not be
able to match with the given query, so that their ranking would never be an issue.

The two mechanisms that implement this negative search control based on
knowledge of the query form in Pragma are called triggering and search matching.
Triggering is the mechanism for applying knowledge of the query operator to filtering
which of the query-generating metaplan nodes should be expanded. Each of the
metaplans can have as an attached value a list of "trigger assertions" that are tested as
the node is first being explored. The *ask-pred-%alue* metaplan, for example, carries
the trigger assertion (query-op ask-value), since a. query modeled by *ask-pred-
value* will carry that query operator. The trigger assertions are tested against the
assertions describing the actual query being matched, with the result of preventing
those query-generating metaplans that cannot match due to their query operator from
even being expanded. Search matching is the other negative mechanism for applying
knowledge from the query, referring to a pre-match performed at each *build-plan*
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node between the assertions present and inherited in that plan context and those
requiring to be matched in the current query. If the result of this search match indicates
that metaplan query branches rooted in that *build-plan* node could not match the
actual current query, all the work of instantiating and testing for a match for that entire
subtree is avoided.

The use of these mechanisms in Pragma is able to speed up the search in the
metaplan tree substantially based on information about the query. Given the scope of
the metaplan tree requiring search, the success of the system depended on making
maximal use of such heuristic guidance both from the pragmatic context, predicting
likely directions for the tree to grow, and from the current query, preferring directions
that could lead to possible matches.

7.4 Linking to the Partial Interpretations of Ill-Formed Queries

While the previous sections have described the heuristics in terms of
matching to a well-formed query by expanding and searching the metaplan context tree
to track the intentions behind this new query, this section once again places this all in
the context of using pragmatic knowledge to suggest resolutions for ill-formed inputs.
With well-formed queries, the query representation could specify the query exactly,
and the only question then was what locations in the metaplan tree could be shown to
motivate that particular query and which of those (if there were more than one) would
the heuristics select as the context most likely to be actually motivating the current
agent in this follow-on query. However, with ill-formed queries, the representation can
only partially specify the query, so that there will typically be many more places within
the metaplan tree which can be linked to this partial representation than could be
matched to the complete one of the well-formed query. (The term "linking" is used
here to stress the difference between this and straightforward matching.) The presence
of ill-formedness places correspondingly greater demands on the heuristic component,
which now must sort out not just sites that match with the current query but all sites
that can be linked to this partial specification of it, judging which of these multiple
matches is most closely logically related to the previous context.

I While the presence of ill-formedness expands the space of options that the
heuristics must filter, the methods applied for examples of linking for ill-forrnedness
are the same as those described in matching and tracking well-formed examples. The
goal is to preserve as much as possible of the heuristic effect from the well-formed to
the ill-formed case, so that the heuristic rankings can then be used not only to
disambiguate multiple match sites in the tree but as part of the same process in the
linking case to suggest a ranked set of possible fillers for the ill-formedness. In the rest
of this section, we look briefly at the effects of the presence of ill-formedness on the
heuristic component and how the existing heuristic approaches serve this new purpose.

There are two extra sources of ambiguity that must be dealt with in cases of
ill-formedness, that introduced by the wildcards in the partial interpretations of the ill-
formed queries, and that resulting from the presence typically of multiple partial
interpretations, stemming from different wildcard parses of the sentence. Both
introduce additional ambiguity in the linking process that must be resolved by greater3 dependence on the normal heuristic rules.
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Given a single wildcard parse for an ill-formed query, the primary additional
ambiguity that arises comes from the fact that the wildcards that fill the slots in the
partial interpretation of the input sentence, whose actual intended contents are
unknown, can match with any element of the plan context. For example, a fully-
specified query like

What is the speed of the Shark?

is restricted to matching to metaplan nodes where some plan variable has been
instantiated to the Shark and where the speed of the filler of that role is known to be
relevant to the particular plan. In our example context of planning to repair or replace
a damaged ship, there are a limited number of roles for which the speed of the ship
filling the role is one of the listed plan constraints, namely, the roles of replacement
ship or of the ship to be used in supplying a spare part. However, if the query were
ill-formed, like

What is the seed of the Shark?

so that there was no possible relevant parse without resoning to wildcarding portions of
the input, even the single wildcard parse that results from the choice of the fourth word
as the wildcard and that might be represented as

What is the ***** of the Shark?

could match to any plan tree node requesting any attribute value for a vessel
instantiable as the Shark, a much larger set. The problem becomes even worse in cases
where the wildcard element comes in the position of a plan variable requiring
instantiation; for instance, if the example were

What is the speed of the Shack?

then the wildcard parse resulting from the choice of the last word as the wildcard

What is the speed of the * 9

could match with instantiations to any vessel at all that cu'.d play one of the speed
roles in the plan.

The normal heuristics, heavily dependent on the pragmatic context tree rather
than on the current query, are the main line of defense against the increased ambiguity
introduced by ill-formedness. The only class of heuristics that is directly affected by
the presence of wildcards in the input are the search control methods that make use of
information about the current query in determining which branches to explore, and they
are programmed in the obvious way to allow exploration of any branch that might
match with any instantiation of a current query that contains wildcards. Thus, for the
example concerning the ***** of the Shark, the search match that tests whether query-
generating metaplans should be expanded beneath a given *build-plan* node would
allow their expansion in this case, even though there is no match but only a possible
link between the wildcard representation of the query assertions and the assertions
present in the *build-plan* nodes for the various vessel attributes that will link to it.
The search match test is thus partially disabled in the presence of wildcards, allowing
more nodes to expand as query-generating subtrees than will in fact be able to link
fully with the ill-formed input, but while the query related heuristics are weakened by
the ill-formedness, those depending on the previous context in the metaplan tree still
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suggest a ranking over the possible fillers that provides the best indication supportable
by the available data as to the most likely link.

The other difficulty introduced by ill-formedness besides wildcard elements,
of course, is the presence of multiple wildcard parses for a single ill-formed input.
This can arise either when the wildcarding of more than one word in the string
produces a valid wildcard parse or when a single wildcard location in the string leads to
alternative wildcard parses, due perhaps to an ambiguity elsewhere in the-sentence.
The current approach to multiple wildcard interpretations of either type is to feed them
each through the Pragma system, collecting the ranked set of linked contexts resulting
from each pass, and then to merge the results based on the rankings assigned by
heuristics. This approach, although cumbersome, allows the power of pragmatic
context to be used in selecting between the possible wildcard parses, since the one
chosen will be the one of the ambiguous set that discovered the closest link in the
metaplan tree to the previous context. There are certainly cases where even this
approach will select an interpretation not intended, or will leave a wide variety of
closely ranked interpretations to choose from, but it represents a consistent approach to
making use of information from pragmatic context, which is the strongest source of
guidance available, to direct the ill-formedness resolution.
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I CHAPTER 8

PRAGNIA IMPLEMENTATION DESCRIPTION

8.1 Introduction

UAs pointed out previously, some elements of the theoretical approach
described in the bulk of the preceding chapters have not yet been realized in the current
Pragma implementation. This chapter both characterizes the comerage of the current
implementation, pointing out which portions of the theoietical framework are included,
and also explains the structure of the implementation, describing when appropriate the
nature of the tradeoffs in choosing the given implementation style. Because Pragma
was intended as a research tool, these decisions were often made in favor of flexibility
and -conceptual clarity, even at the expense of speed.

I While the description of the approach given in the previous chapters does
include features not yet implemented in the running Pragma system, enough of the
approach has been implemented to establish its feasibility and to enable conclusions to
be drawn about the usefulness of this kind of model and of these sorts of heuristics. In
overview, the current Pragma system implements the full family of plan-building
metaplans and most of the query metaplans, except for part of the compositionality ofIcomplex set queries. The parallel structure of evaluative metaplans with the code to
main-ain the duplicate trees and to switch back and forth appropriately in those cases
and the "nform metaplans are not covered in the implementation. For the heuristics, the
current sysn implements the heuristic rules based on tree shape and metaplan context
as presented, using the node rankings that result to control the search in the plan tree
through an agenda mechanism. The heuristic rules based on agent world knowledge,
however, remain to be implemented.

In the rest of this chapter. we discuss in turn the implementation of each of
the Pragma system components, describing the major choices made and the style of
implementation adopted in each case, and ending with a brief description of the place
of Pragma in the context of the full BBN Janus NL system.

I 8.2 Wildcard Parsing

While a wildcard parsing facility as described in Section 4.4 remains a
desirable goal, it was not possible to achieve an actual implementation of this in the
Janus context within the scope of this research effort. Therefore, the wildcard parses
used as input to the Pragma system were derived from the parses of well-formed
queries by substituting wildcards by hand for the elements of the parse derived from
the word assumed to be wildcarded.

I
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An initial attempt was made, however, using the Janus ATN parser, to verify
our expectations as to the number of parses that would result from treating each word
of an ill-formed sentence in turn as a wildcard. Since Pragma's linking algorithm
needs to be run with each possible wildcard parse, its feasibility in practice depends on
there being typically a small number of wildcard parses for a given ill-formed sentence.
This test worked by defining a set of pseudo-words, one for each syntactic class known
to the parser. To test for parses with a particular word position treated as a wildcard,
each of these pseudo-words in turn was substituted for the wildcarded word and- the
resulting string fed to the parser. If a successful parse was found, that meant that the
result of a true wildcard parser would have included that syntactic possibility in its
wildcard parse for that word position. For example, the ill-formed query

Is the Fox it port?

cannot be parsed as it stands. If the word it is wildcarded, a parse is found in which
that fourth word is identified as a preposition. That parse was identified in our test
procedure when the pseudo-word representing the class of prepositions was tried in
that word position. In this example, that word position is the only one that yields a
parse when wildcarded.

In most of our tests, we found more than one position that yielded a parse.

For example, the query

The vessels in group 2 was deployed to the Med.

would find wildcard parses both when vessels and was were wildcarded. The most
frequent result in our initial tests was that 2 of the wildcard positions produced valid
parses, and that number was seldom higher than 3, which was an encouraging sign for
this approach, implying that syntactic constraints alone were strong enough to rule out
many of the possibilities opened up by wildcarding each word position.

This initial test of wildcarding in Janus only made use of the parser's
syntactic component. To include semantics in the test would have required a way to
disable any caseframe tests involving the wildcard value and to be able, instead, to
create some semantic representation describing the class of entities that would have
passed the test. For example, the query

What is the vocation of Fox?

is syntactically valid, but semantically ill-formed. If vocation were wildcarded, the
semantic component should restrict the possible fillers to things that can be properties
of a ship, while if Fox was wild, the restriction there would be to entities that can have
vocations. Although such semantic processing was not part of our wildcard test in
Janus, adding semantics would have strengthened the result, since many wildcard
parses that appear to succeed syntactically would fail when semantic filtering was
added.

Thus, the results of that brief study argue that the number of wildcard parses
would not on the average be large enough to prevent running the Pragma linking
algorithm for each one and using Pragma's normal heuristic scheme for ranking the
resulting links. Actually implementing wildcard parsing and connecting such a parser
to Pragma to confirm this conjecture remains a research goal, and one that will
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probably be dependent on moving to a parser implemented in a different tormalism. In
particular, as pointed out in Section 4.4, it seems that unification parsing would be a
natural setting in which to implement this wildcard approach.

U 8.3 Atomic Sentence Set Logical Representation

Pragma's logical representation was picked to make matching easy, since
each test for a link requires testing for a match between the logical form of the query
and the logical form predicted by the context metaplan tree. The logical representation
used in the rest of the Janus system, the World Model Language (WML) described by
Ayuso and Hinrichs [4j, is not well-suited to this purpose. WML is an intensional
logic designed to be derived compositionally from the components of the surface text
in the tradition of Montague semantics [391. It is a rich and complex formalism in
which matching would have been very difficult, so an elementary representation in
terms of conjunctions of atomic sentences was adopted instead. That choice made it
possible to turn the matching over directly to a unification-based prover and also
simplified the incremental specification of query contents in branches of the plan tree.
In addition, many of the other components of the system including the tree expansion
procedure and heuristic rule application mechanism were also implemented using the
prover, so that communication between the components was greatly eased. Naturally,
a price was paid in terms of representational adequacy in replacing WML with this
simplified logical form, but the range of example queries required for developing and
testing the metaplan model and linking approaches were representable adequately in
the simple form. The rest of this section discusses these choices in more detail.

The very richness of the WML form of intensional logic used in the Janus
system argued against its direct use in Pragma. There are frequently ways of phrasing
things in WML that are logically equivalent in terms of the result of the query but that
appear wildly different, since WML retains some elements of the surface linguistic
form. For example, the query

List the readiness of the Fox.

5 is represented as shown in Figure 8.1.

(bring-about
((intension
(exists ?jx3 list
(object.of ?jx3
(iota ?jx4 readiness.value
(overall.readiness
(iota ?jx5 vessel (name.of ?jx5 "Fox"))
?jx3)))))

*time world))

Figure 8. 1: WML for List the readiness of the Fox.

This WML requests the bringing about of the result of evaluating a particular intension
at given time and world indices, that intension being the existence of a list whosc
object is the unique (iota) readiness value such that it is the overall readiness of the
unique vessel named "Fox". However, the closely related query

117I



BBN Systems and Technologies Corporatior Report No. 7047

What is the readiness of the Fox?

is represented as in Figure 8.2.

(query
((intension
(present
(intension
(pred-to-set

(lambda (?jx7)
thing
(equal
?jx7
(iota ?jx8 readiness.code
(overall. readiness
(iota ?jx9 vessel (name.of ?jx9 "Fox"))
?jx8) ) ) ) ))))

time world))

Figure 8.2: WML for What is the readiness of the Fox.

The initial speech act operator is different in the two queries, as one would expect, and
the what clause in the second is represented explicitly by the variable ?jx7 of type
thing that is equal to the object of the query.

To be sure, there are cases where linguistic differences of that sort do have
significance with respect to the pragmatic context generating the query. For example,
query forms like what is that are requests communicate a more formal and respectful
attitude than command forms like list, and thus are appropriate in slightly different
discourse circumstances. In such cases, there might be benefit to including that sort of
detail in the metaplan model, so that query metaplans would predict not only the
logical content of queries justified in particular situations but also features of their
linguistic form, and those predictions could then be related to the particular pragmatic
context. However, such refinement is far beyond the current research frontiers for
Pragma. Including such detail in the logical forms would merely have required
building code into the matching component that was able to recognize the equivalence
of the two forms for these purposes. Thus, there was a strong argument in favor of a
more restricted logical form.

The choice of a logical form came partly from the engine chosen for the
matching task. The simplest choice for that seemed to a unification-based prover
similar to Prolog except that it returns the full set of matches found when there are
more than one. Such a prover could be implemented quickly in Lisp, although its
slowness did end up placing some limitations on the use of Pragma for demonstrations.
One helpful feature added to this prover's design was the ability in cases where no
match was found to print out the subformula that was failing with the variable bindings
generated in the matching attempt so far, data that often proved useful in debugging the
plan tree expansion and linking examples.

Another criterion for the design was that the elements of the query be able to
be built up easily from the relevant domain plan and metaplan elements in the tree. For
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example, a query like

I Which C1 cruisers are within 100 miles of Sterett?

has the readiness and vessel-class of the cruisers supplied by the replace-ship plan,
while the distance limitation is added by an *add.scalar-constraint* metaplan further
down the tree. The simplest representation allowing for such assembling of query
specifications was a simple conjunction of atomic sentences, collected from all the
parent plan tree nodes. There are naturally some kinds of queries that cannot be
directly expressed in this form, including disjunctions 2 like

List the cruisers or destroyers in the Indian Ocean.

and queries requiring internal quantification, like

Which ships filed less than 3 casualty reports last year?

One area for further work is to expand the logical coverage of this representation to
handle these sorts of cases, making the appropriate extensions to the matching code
and to the code that assembles the query from the plan tree nodes for matching.

Currently, however, the logical representation for each input query is as a set
of atomic sentences, meaning simple, unnested propositions. The predicate names are
taken from a set of domain predicates with known type constraints on their arguments,
and the argument positions are filled either with domain constants or with typed
variables. The types of both constants and variables are recorded in a hierarchical type
system that includes both simple types and set types.

Besides a set of such assertions, the representation of a query also includes a
query operator taken from the following set with a logical status similar to a WML
speech act operator that describes what is being asked:

* * (ask-value <var> <sentence>) where <sentence> includes <var>

* (ask-truth <sentence>)

3 * (a*k-set-fillers <var>) where <var> is of a set type

• (ask-set-cardinality <var>)

3 Thi representation of queries as a set of simple propositions plus a query
operator is derived from an original semantic representation of the query in the nested,
intensional, WML form by projecting away the quantificational and intensional
material. There are thus further distinctions that can be represented in the original
logical forms but that are lost in the translated form, in addition to the disjunction and
quantification examples mentioned before where the result set specified by the query is
affected. For example, distinctions between given and new information, like that
between the following two queries,

How many CI ships are in the Indian Ocean?

2A rudimentary disjunction mechanism using a one#of function with special proof axioms was added
to the prover for use in plan tree expansion tests, but it has not been used in query representation.
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How many shiws in the Indian Ocean are C 1'

will not be maintained; the translated form for both will be that for

List the C1 ships in the Indian Ocean.

as given in Figure 8.3.

pred-list ((type ?ship (set-of vessel))
(readiness ?ship Cl)
(location ?ship Indian-Ocean))

query-op (ask-set-fillers ?ship)

Figure 8.3: Representation of List the CI ships in the Indian Ocean.

Distinctions in quantifier scoping are also lost. For example, while the query

Which ships have visited each port in the Mediterranean ?

has two interpretations, one where each takes narrow scope, listing those ships that
have each visited all ports, and one where it takes wide scope, listing for each port
those ships that have visited it, the representation of this query as a list of atomic
sentences shown in Figure 8.4 is ambiguous.

pred-list ((type ?ship (set-of vessel))
(type ?port (set-of port))
(location-of ?port Mediterranean)
(visited ?ship ?port))

query-op (ask-set-fillers ?ship)

Figure 8.4: Representation of Which ships have visited each port...

However, while this representation does thus project away some of the exact meaning
of complex queries, the ambiguous forms that result still provide a query representation
that can be matched against the predictions of relevant queries and used for ill-
formedness correction. The relevance of the individual assertions in the representation
can be tested against the pragmatic model's predictions even if the truth conditions of
the query as a whole are not exactly maintained. Again, one direction for further
research would be to expand the system's representational power so that it could model
and match against those features in the intensional logic that it currently ignores, but
that further power would be essential only for the rare examples where those features
directly affect the choice of match in the plan tree or are directly involved in the ill-
formedness.

8.4 Plan and Metaplan Implementation

The use of sets of atomic sentences as the logical form carries over into the
representation for domain plans, since the heart of each plan is its list of preconditions,
which is in exactly that form. For example, Figure 8.5 shows the definition of the plan
for restoring the readiness of one of the assigned slots in a battle group. Each plan has
a header with function name and arguments that describes the goal achieved by the
class of domain plans described here. The plan can introduce further local variables in
addition to its arguments, and the types of all variables are declared in a list of pairs of
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(def-plan-class restore-slot-readiiiass
header (restore-slot-readiness ?slot ?group)
vars (?ship ?srdy)
types ((?group battle-group)

I (?slot battle-aroup-slot)

(?srdy readiness-code)
(?ship vessel))

preconds ((assigned-to-slot ?ship ?slot)
(overall-readiness ?ship ?srdy)
(not-Cl ?srdy))

actions ()
subclasses ((replace-ship ?ship ?slot)

(repair-ship ?ship)))

Figure 8.5: The Restore-Slot-Readiness Plan Class

variable and corresponding type. The preconditions serve to bind the variables, in this
case ?ship and ?srdy, and to define the common restrictions on plans of that class, here
that the ship currently occupying the slot must not have the top, "Cl" readiness rating.
This plan class divides into two plan subclasses, one in which the damaged ship is
replaced and one where it is repaired.

The replace-ship plan class ir, Figure 8.6 demonstrates a few other features.

(def-plan-class replace-ship
header (replace-ship ?ship ?slot)
vars (?ship-class ?ship-loc ?cur-rship-loc)
free-vars (?rship)
constants (Cl)
types ((?ship vessel)

(?slot battle-group-slot)
(?rship vessel)
(?ship-class Tz ' -71 L l.
(?cur-rship-loc location)
(?ship-loc location)
(Cl readiness-code))

preconds ((vessel-class ?ship ?ship-class)
(vessel-class ?rship ?ship-class)
(overall-readiness ?rship Cl)
(location-of ?rship ?cur-rship-loc)
(location-of ?ship ?ship-loc))

actions ((sail ?rship ?cur-rship-loc ?ship-loc)
(assign ?rship ?slot))

subclasses ())

Figure 8.6: The Replace-Ship Plan Class

In this case, in addition to the normal variables that are dependent on the instantiated
values of the arguments, there is also a free variable not thus determined, here ?rship,
which an agent employing any plan in this class may instantiate at will to any entity of
the proper type that fits the preconditions, here, any Cl vessel of the same class as the
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damaged one. Note also that this plan class is not further divided into subclasses, but
that there are two actions shared by all plans in this class, a sail action to get the
replacement ship to the place where the damaged ship was, and an assign action to
administratively deploy it in that slot.

As for the problem-solving metaplans, because they are plan classes
themselves, chosen to represent the agent's plan-building moves, they are represented
in a form similar to that of the domain plan classes, although the preconditions in-this
case are tested against the domain plan library to determine, for example, subplan
relationships among plans, and against the metaplan tree, rather than against the world
knowledge model. The definition in Figure 8.7 of the *build-subplan* metaplan,
which encodes the step of building a plan in one class by picking one of its subclasses
and building a plan included in it, will give the flavor.

(def-ps-plan-class *build-subplan*
header (build-subplan ?plan-class-name

?arg-values

?free-var-values)
vars (?sub-class-name

?sub-arg-values
?free-var-bindings)

free-vars (?sub-class-header ?sub-free-var-values)
preconds

((sub-class-header-of ?plan-class-name
?sub-class-header)

(car sub-class-header ?sub-class-name)
(instantiated-plan- args

?plan-class-name
?arg-values
?free-var-values
?sub-class-header

?sub-arg-values
?sub-free-var-values))

actions ()
subclasses

((*build-plan* ?sub-class-name
?sub-arg-values
?sub-free-var-values)))

Figure 8.7: The *Build-Subplan* PS-Plan Class

The metaplans are called "ps-plans" because they encode problem-solving actions,
and their names are by convention surrounded with asterisks. The first few arguments
in the header of each metaplan are used by convention to carry the plan tree context,
expressed as a domain plan class name, the set of argument values for this particular
instance of that plan class, and the free-var-values if any specifying any instantiations
of free variables modeled by higher *instantiate-var* plans. (No explicit type
checking on arguments is done at the metaplan level.) The free variables in this case
are the ?sub-class-header. the instantiated header of the new domain subplan, and its
?sub-free-var-values. (Note that the ?sub-class-name alone does not determine the
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?sub-class-header, since a plan class may have multiple plan subclasses that differ
only in argument values.) The preconditions here test facts from the plan library like
sub-class-header-of and facts computed as part of plan tree expansion, like the
instantiated-plan-args form that stores the argument values for the subplan that were
precomputed when the parent *build-plan* was first reached during tree expansion.
The *build-plan* metaplan is the one subclass of *build-subplan*, invoked now on
the subplan.

The metaplans already implemented within Pragma include the full range of
plan-building metaplans as described in Section 6.4 and almost the full range of query
metaplans from Section 6.5; the evaluative and informing metaplans remain to be
implemented. The plan-building metaplans include the *build-plan*, *build-
subplan*, and *build-subaction* triad that outline the structure of the domain plans in
the metaplan tree, and the metaplans involved in instantiating open variables,
*instantiate-var* itself for binding a variable to a particular value and the *constrain-
var* metaplans *add-.boolean-constraint* and *add-scalar-constraint* for
restricting the value of an open variable without yet binding it to a particular value.
The query metaplans include the plan feasibility queries *ask-pred-value* and
*check-pred-value* that ask directly about preconditions and the query metaplans
related to the set of possible fillers for an open variable slot, like *ask-existence*,
*ask-cardinality*, *ask-fillers*, and *ask-attribute-value*. Thus a large enough

core of metaplans is implemented to demonstrate the usefulness of the metaplan
approach for discourse modeling in this setting.

I 8.5 Domain Plan Library, Database, and Type System

Collections of domain plans in the form given above were worked out for
each of the two situations within the naval deployment domain in which examples were
developed, the damaged ship setting and the SPA prosecution setting. (These settings
are described in Sections 9.2.1 and 9.2.2.) In each case, there was a single top-level
goal that the agent was assumed to be pursuing which set the context for all the queries
in the dialogue. Because the two settings fell within the same domain, many of the
lower-level plans like those for sailing a ship from one location to another were shared
by both settings, and could appear as nodes in either tree.

The preconditions in the domain plans were tested against a database of facts
about the current world state represented as a set of atomic assertions. This database
was populated with sufficient ship names and related data to ensure that suitable

candidates would be available for the open slots in the plans. The root plans for each
setting included arguments specifying, for example, which ship was damaged, and the
database facts were naturally tailored to match those situation definitions.

Along with the database of domain facts there was a type system in the form
of a collection of type assertions for each entity in the database and a set of subtype
assertions that created a taxonomy of types. Thus, for the Fox, there was an assertion
of its type, (type-of Fox aegis-cruiser), and assertions relating that type to its
supertypes, like (sub-type aegis-cruiser cruiser), and (sub-type cruiser
surface.%essel). There were also deductive axioms allowing the unification matching
code to conclude new type facts from the type-of and sub-type assertions, for example,
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in this case, (type-of Fox surface-vessel).

When the system was operating in its instantiation mode, the plan
preconditions and type assertions were tested against the database and type system as
each new node in the plan tree was constructed. If no match could be found in the
database for the instantiated preconditions, that domain plan was considered to have
failed, and the node was ignored. If one or more matches were found, those values
were used as the variable instantiations in new plan tree nodes. When the system was
not running in instantiation mode, of course, a sirgle instance of each plan node
explored was built, never none or more than one, with the dependent variables bound
to assumed, newly-generated constants, rather than to actual values from the database.

8.6 Building the Metaplan Tree

Given the implementation of the metaplans and domain plans in a form
amenable to the unification prover, building the metaplan tree becomes a fairly
straightforward process. Each metaplan node that has either metaplan subplans or
subactions, beginning with the root node supplied by the situation, has the
preconditions of those possible children suitably instantiated given the current bindings
of any metaplan variables tested against a database of metaplan facts describing the
metaplans and the tree so far. A child node is built for each successful match found in
that database for the child's preconditions. For example, the *build-subplan*
metaplan, which is itself a subplan of *build-plan*, is instantiated once for each
domain subplan of the domain plan in the *build-plan*, assuming that the metaplan
preconditions succeed in each case.

Metaplans like *ask-pred-value* do not involve moving to a different
domain plan from the parent, while metaplans like *build-subplan* do. One of the
preconditions of metaplans that do involve moving to a different domain plan is one
that determines the variable bindings for the new plan. The assertions against which
these preconditions match are created in advaice by special code that precomputes
when a metaplan node for the parent domain plan is first explored the variable bindings
that would apply for each of its subplans or subactions, given that its own variable
values are known. When the system is running in instantiated mode, :his
precomputation step is where the domain database is consulted, and 0, 1, or many
instances of these assertions of precomputed values will be created depending on how
many matches are found for the child's preconditions in the domain database. To adapt
the algorithm for the non-instantiated mode, that precomputation step is altered to
assert instead a single instance of the child plan with dependent variables bound to
newly generated unknown constants.

Some alterations were made to the straightforward tree expansion algorithm
by adding tests to prevent the exploration of branches that it could be predicted in
advance would fail. Because these tests depended on the query being matched, they
were discussed in Section 7.3, which covered heuristic search control techniques based
on information about the query. They were implemented by means of triggering
assertions added to particular metaplans, which were interpreted as additional
preconditions on the creation of nodes based on those metaplans. For example, a
trigger was attached to the *ask-pred-value* metaplan that tested whether the query
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operator in the current partial parse was ask-value. There would be no chance of
finding a link below that *ask-pred-value* node when that trigger did not fire, so
adding the trigger did not change the result of the computation, but it did substantially
decrease the size of the tree that needed to be searched. In this example, with similar
triggers added to each of the query plans that maps directly to a query operator, the
effect was that each queryable precondition in a *build-plan* node expanded only to a
single query node, rather than to one of each type. Similar triggers were also used to
control query branch expansion based on the predicate being queried and -to choose
between the two subplans of *instantiate-var*, *pick-value-suggested* and *pick-
value-at-random*, based on whether or not a constant of the appropriate type to serve
as an instantiation for the open variable occurred in the partial interpretation of the
query.

Another efficiency move made during system development was to break up
the database of assertions about the plans and about the tree structure against which the
metaplan preconditions are tested, attaching the relevant assertions to each individual
node in the tree, and then collecting the actual list of assertions to be fed to the prover
from the neighboring nodes of the node being tested. Again, this merely sped up the
prover by shortening the list of assertions which it had to search for matches without
changing the result computed.

8.7 Heuristic Component Implementation

3 The heuristic rules described in Chapter 7 are used both for directing the
search of the metaplan tree and for ranking the link nodes found. In their former role,
the heuristic component derives a score for each new node as that node is first
encountered, and the search of the tree is driven by an agenda of nodes encountered but
not yet explored, with that agenda kept sorted by node score. The score for a single
node is derived by testing the left-hand sides of all of the h-rules for that node and then
executing the right-hand sides of each h-rule whose left-hand side was satisfied. The
same unification matcher used in plan tree expansion is also used to execute the h-rule
tests, running against a database of node scores and facts about the metaplans
instantiated at neighboring nodes. The effect of the right-hand sides of the h-rules is
either to set the score for the node or to add to or subtract some increment from it. The
rules are designed so that exactly one set-score rule applies to each noue, and those
rules are tested first. The increment rules are then tested, with the resulting score
adjusted if necessary to remain within the defined 0.. 100 range.

Note that while the heuristics and tree building approach have been described
in terms of new tree structure being created from the root toward the leaves, Pragma
also searches upward over tree structure already instantiated in previous searches.

When working with an initial query, where only the top-level plan is known, Pragma
does work downward from the root, encountering each node for the first time when it
creates it as part of expanding its parent. The heuristic scoring in that case starts at the
root, with it receiving the score 100. For subsequent queries, howevr, the search
begins from the context that matched the previous query. With the search information
and scores from the previous query cleared away, that single previous context node is
marked as encountered and given the score of 100, and the search starts by expanding
that node. Expanding in this case means encountering all of a nodle's unencountered
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neighbors, parents as well as children, some of which will in this case already exist,
while others may need to be created. Note that the triggering mechanism, in particular,
means that a second search across the same tree may need to create different children
of some nodes than were created in the first pass, since the determination of which
nodes are explored depends in part on the current query. However, the effect of the
search process and heuristics are thus made to be equivalent whether tne search is
across previously built or freshly built tree structure.

8.8 Testing for Links

The final result of the search process in the metaplan tree is testing for links
between the partial interpretation of the ill-formed query and the queries predicted
from the current context in the tree. The match test for possible links is implemented
as a special function invoked when query generating nodes in the metaplan tree are
explored that calls the unification prover to search for a match between the set of
assertions in the partial interpretation of the query and the tree context, meaning the
collected preconditions of the current node and all its ancestors, plus the query operator
supplied by the query generating node itself. If a match is found, the newly-identified
link node is added to a global list along with its heuristic score, later used in ranking it
against other links.

As an additional efficiency move, there is a related but weaker test for the
possibility of a match that is applied at each *build-plan* node. In this test, the query
operator is ignored, since the metaplan branch has not yet modeled any choice of query
operator, but the rest of the preconditions in the partial interpretation are matched
against those available in the *build-plan* context. Using the trigger mechanism, the
result of this test is used to control the expansion of query-generating metaplan nodes
from this particular *build-plan* node, since a failure in this test implies that no query
generated from this node could possibly link with the current partial interpretation.

The sorted list of identified links is theresult returned from the entire search.
If more than one possible previous context is to be taken into account, the lists of links
from each search are merged. That sorted list then gives Pragma's heuristic judgment
as to the most likely locations in the plan tree to have motivated the agent's new query,
and each link node also contains a possible replacement for the wildcard element(s) in
the partial interpretation of the query based on its explanation of the agent's likely
plan-building intent.

8.9 Integration with the Janus NL System

The final major topic in characterizing the coverage of the implementation is
describing the place of the Pragma modules in the larger context of the natural
language system for which they were designed. While the theoretical approach for
Pragma was envisioned in the context of a complete system including a parser,
interpreter, and application system, the focus in the implementation has of course been
on the modules directly concerned with modeling plan context and linking from further
utterances to the plan model, rather than on the other modules of such a complete
system. Nevertheless, maximum possible use in development and testing of the
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implementation has been made of the availability of the Janus [57] natural language
interface system, so that the Pragma modules were designed to accept a logical
representation derivable from the World Model Language (WML) logical form used in
Janus and the examples tested in Pragma have been derived from the Janus WML
parses for those utterances. While there is an initial version of a translator to convert
from the WML into the set of atomic sentences form used for Pragma input, the Janus
system does not yet have a functioning scheme for wildcard parsing for ill-formed
inputs. Thus the input to Pragma at the moment is taken from WML parses-of correct3 sentences, passed through the translator, with the wildcards then introduced by hand.

Thought was also given to using Pragma's plan model as part of a unified,
comprehensive Janus discourse model, and that was bom in mind in the design,
although that integration work remains to be done. The Janus semantic system does
maintain a partial discourse model [5] that represents the set of discourse entities
created by each utterance, and that model is used to determine possible referents for
anaphoric elements and to track the backward-looking and forward-looking centers.
That discourse entity model also stores information about the syntactic structures
associated with each entity, for use in calculating co-occurrence restrictions in
intrasentential anaphora. but it has no representation of the higher-level pragmatic plan
structure of the discourse. An important direction for further work would be to
integrate the Janus discourse entity model with Pragma's metaplan model, since
centering phenomena like topic shifts that the semantic component currently models
should also be represented as context shifts in the metaplan model, so that the two
levels of model would reinforce each other. However, Pragma currently functions only
as an adjunct to Janus, rather than sharing with it an integrated discourse model.

Although not yet fully integrated, the current implementation of Pragma was
demonstrated in March, 1988, as part of a Janus demonstration focusing on the
research directions and goals of the project. Working in the SPA domain described in
Section 9.2.2, Pragma tracked the plan context as Janus answered a couple of well-
formed queries and then made suggested corrections for examples including both alias
errors and novel usage examples like

What is the preparedness of Fox?

where the word preparedness was intended by the agent as a synonym for readiness
but was unknown to the system. The well-formed examples used for tracking were
translated from the Janus WML form to Pragma's atomic sentence set form by the
initial version of the translator mentioned previously, but wildcard parses for the ill-
formed cases were worked out by hand in advance. The suggested corrections Pragma
identified from the link nodes in the plan tree were presented to the user in a popup
menu, and if the user indicated that one of them was correct, the wildcard(s) in the
WML were replaced with the appropriate logical forms and the query passed off by
Pragma to the remaining stages of Janus processing.
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I
U CHAPTER 9

RESULTSI
9.1 Introduction

I During the development of the Pragma system, a corpus of examples in two
different domains has been developed and tested. Because Pragma is not currently
connected to the domain model or data base of the actual Janus system, not only the
domain plans for a given domain but also the actual instances of entities like ships,
their types, and the database facts that describe their current status in the world had to
be coded by hand in support of each set of examples. This has limited to some extent
the number of examples with which Pragma has been tested and the range of
conclusions that can be drawn. Nevertheless, the examples that have been run in the
two domains do exercise a broad range of the features of both the metaplan model and
heuristic system, leading to useful conclusions about the applicability of these methods
for ill-formedness resolution.

This chapter presents and analyzes sets of examples from each of those
domains. For each example, there are many variables that affect the number and
ranking of the possible links identified for the wildcard elements, including at least the
following factors:

* the metaplan tree context established by the previous tracking of well-
formed utterances in the problem-solving dialogue,

o the actual wildcard partial interpretation of the ill-formed input, and

" the setting of the cutoff threshold score below which searching stops.

The analysis of the examples looks for patterns within those factors in order to draw
conclusions about which factors make the different classes of examples more or less
suited to ill-formedness resolution using these methods, about the features of the
Pragma system design that contribute to more or less effective handling of the different
classes, and about the resulting implications for areas where further work would be

* fruitful.

9.2 Presentation of Example Results

I
I
I
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9.2.1 Damaged Vessel Domain Examples

The first set of examples to be presented are taken from a scenario where the
agent is responding to the report of a damaged vessel called the Sterett. For this set of
examples, Pragma was run in the mode in which dependent variables in the metaplan
tree were in-taptiated using the actual vpil'is from the database. The results 1.t
examples, numbered DI through D5, are presented following a description of the initial
context that was assumed preceding each of the ill-formed examples.

9.2.1.1 The Initial Context

The plan context was established in each case preceding the ill-formed query
by having the system track the well-formed input

What class is Sterett?

This query that might indicate that the agent was either thinking of replacing the Sterett
with another vessel of its same class or perhaps thinking of supplying spare parts and
wondering about the damaged vessel's class as part of predicting what parts would be
needed. The input representation for that query is shown in Figure 9.1.

(def-partial-parse *class-of-sterett*
sentence "What class is Sterett?"
vars (?ship ?class)
wildcards ()
types ((?ship aegis-cruiser) (?class vessel-class))
bindings ((?ship sterett))
pred-list ((vessel-class ?ship ?class))
query-op (ask-value ?class

(vessel-class ?ship ?class))
ill-formed nil)

Figure 9.1: Input Form for What class is Sterett?

This form records for the given input sentence the following:

* a name,

* the actual input string,

* a list of which atoms in the logical forms are variables, that is, symbols
whose values are either

* supplied literally in a bindings clause,

* fixed by application of predicates, or

" the object of the query

(the rest of the atoms in these forms being therefore wildcards, function
names, or constants),

* a list of the atoms that are wildcards, that is, those variables whose
denotation is unknown not because they are the object of the query but
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because they come from portions of the input that were assumed to be
garbled,

* a list of pairs giving the types in the type taxonomy for each of the
variables found in the formulas,

* * a list of bindings for those variables that have particular values assigned to
them (,-ft-r, abbreviating for coiveni-nce th, ;,z,, f.l-ua nn indc WML
which achieves the effect of binding ?ship to Sterett by requiring 'that
(ship-name ?ship "Sterett")),

e the actual list of atomic formulas that together place sufficient restrictions
on the variables to constrain the query target to be the correct answer,

* a form labeled as the query-op encoding the type of query, whether a yes-
no question about a formula, a request for the list of members of a set, or a
request for the value of a variable, and also which variable or form from
which atomic formula was the query target, and

* a final flag telling whether or not the input was ill-formed.

The basic root node for this domain is built from the domain plan header
(have-able-group-for-task ?task ?group ?readiness), representing the plan class
centered around the goal of having a battle group of ships that is capable of performing
a particular task, given that the currently-assigned group is at a particular current level
of readiness. This style of beginning with a known class of plans depends on the
assumption that the expert in this kind of expert advising dialogue is aware in advance
of at least the broad goal that the agent is pursuing. As the system tries to track the
plan-building intent of the agent's queries, a tree is built of the possible metaplan
moves the agent could use to select and refine a particular plan from within the class of
those responsive to the particular overall goal. In this case, the first plan class division
separates domain plans that restore the readiness of the current group from those that
instead replace that group with another already in a higher readiness state. When the
system is presented with the well-formed input just discussed,

What class is Sterett?

the tree of metaplan nodes explored includes the *build-plan* nodes shown in
Figure 9.2.

(have-able-group- for-task
task-201 kennedy-group C3) (1)

(restore-group-readiness kennedy-group C3) (2)3 (restore-slot-readiness
cruiser-slot-1 kennedy-group) (3)

(replace-ship sterett cruiser-slot-i) (4)
(repair-ship sterett) (5)

(replace-group-for-task task-201 kennedy-group) (6)

Figure 9.2: Partial Tree from Matching What class is Sterett?

Because the replace-ship plan in line (4) includes among its preconditions
the (vessel-class ?damaged-ship ?damaged-ship-class) form used in that plan in
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combination with other preconditions to require that the ?vessel-class of the vessel to
be used as a replacement be the same as the class of the damage- vessel, the
*ask-pred-value* metaplan using that precondition can create a child toi the

replace-ship node that will link to the given query. The resulting tree models that the
agent is asking the query in order to explore the feasibility of using a plan in the
repl-v'e-ship class tn rplace, the individual vessel in the groun whose damaged tac
has reduced the group's readiness for the task.

Naturally, this is not the only place within the plan tree where the class of the
damaged vessel serves as a precondition and thus could motivate a query, but being the
closest to the point where the search began (and in the absence of more specific
heuristics than tree distance), it receives the highest rank of any of the linking nodes, in
this case, 70. Note that the number of possible links in the metaplan tree that will be
found for any particular query depends greatly on the value of the low heuristic score
cutoff used. When that value is set at 50, the value most frequently used in our tests,
the link at replace-ship is the only one found. If the cutoff is lowered to 1, its lowest
value, 6 other links are identified with scores of 45, 35, 30, 30, 20, and 20. In this case,
each of these lower-ranked link nodes is attached to a sail-direct-conventional plan,
where the class of the vessel is referenced as part of computing whether the distance
from the damaged ship's current location to a repair site or port is within the non-
refueled cruising range for ships of that (non-nuclear) class. .(There are multiple such
plan nodes because sailing the damaged ship away is part of various subplan classes for
repairing or replacing it, some of which have variables with multiple possible
instantiations.) This formulation of domain plans predicts, then, that a query as to the
class of the damaged ship is more likely to be related to identifying a suitable
replacement ship than to sailing the damaged ship away, although both are reasonable
possibilities.

The Pragma system uses the nodes that link to a well-formed query like the
above as the new plan context for succeeding utterances. If there are more than one of
these linking nodes, a flag controls whether the system uses all of them as initial
contexts for the next utterance by running the tree search algorithm once for each
possible context, or whether it merely takes the highest-ranked linking node and uses
only it as the new starting point. Note that there is a tradeoff here between this choice
of how many contexts to carry forward and the choice of the heuristic cutoff that
controls the depth of each search within the plan tree, in that carrying forward all the
previous linked nodes might also require using a higher cutoff to limit the subsequent
searches, while carrying forward only one starting point allows a lower cutoff and
deeper search. Most of the testing of Pragma has followed the latter path, using a
single node to represent the previous context.

9.2.1.2 Example DI: What is the VOCATION of Fox?

The first ill-formed example, What is the VOCATION of Fox?, was run
assuming the replace-ship context described in the previous paragraphs. Like all of
these examples, this is a hand-crafted alias error example, where there is a single word
in the input string that is not part of the intended meaning but that is, in itself, a word
whose lexical and semantic features are known to the system, so that the system has no
a priori way of determining which word is in error. Frequently, as pointed out in
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Section 8.2, the system finds two or more successful wildcard parses in which different
words are assumed to be the erroneous one. Nevertheless, we will assume for these
examples a Kigle wildcard parse, indicating by the word set in capital letters which
word has been wildcarded.

The representation of the partial interpretation for Example DI is shown in

(def-partial-parse *vocation-of-fox*
sentence "What is the VOCATION of Fox?"
vrs (?ship ?x)
wildcards (+T+ +P+)
types ((?ship aegis-cruiser) (?x +T+))
bindings ((?ship fox))
pred-list ((domain-pred +P+;

(+P+ ?ship ?x))
query-op (ask-value ?x (+P+ ?ship ?x))
ill-formed t)

Figure 9.3: Input for Example D1

In the well-formed query Lm which this one is derived, the word location would give
rise in the logical form to some variable for the location, a type for that variable, and a
predicate relating that variable to the Fox, as in (location-of Fox ?location). Here,
where the garbled vocation has been treated as a wildcard, we still have a variable, ?x,
but its type is represented by the wildcard +T+ and the predicate relating it to the ship
by the wildcard +P+. The predicate list in this example also contains the restriction
that the +P+ wildcard be a domain-pred; this helps to prevent spurious matches where
the (+P+ ?ship ?x) unifies with some inappropriate form like a type predicate. A more
extensive type system that ascribed types also to predicates would be another way of
enforcing this restriction.

Working outward from the replace-ship context established by tracking the
previous What class is Sterett? query and searching for linking nodes to this partial
parse with the heuristic cutoff set at 50, Pragma explores an area of the tree that
includes the portion shown in Figure 9.4. The search begins with a heuristic score of
100, shown in the left-hand column, assigned to the *ask-pred.value* node on line (2)
that linked with the What is the class of Sterett7 query. The parent *build-plan* node
(1) is scored 95. Its children include *ask-pred-value* nodes for each of the other
atomic predicates in that domain plan (3-6) and *sub-action* nodes like (18) and (20)
for the different steps in plans of the replace-ship class, spawning subtrees containing
at lower levels *ask-pred-value* nodes for their own preconditions.

The replace-ship domain plan in node (1) introduces a free variable ?rship
to identify which vessel will be used to replace the damaged one. When first
introduced into the plan tree, that free variable is bound to a newly-generated constant
!Lke rship#3, meaning that the model has not yet tracked any move on the agent's part
to consider any particular instantiation for that oper variable. Because that constant
will not unify with the ?ship variable bound to Fox in the partial interpretation, none of
the *ask-pred-value* nodes involving ?rship at that level (4-6) can be linked with this
input. (Since the ?ship variable in the plan tree is bound to Sterett, nodes (2) and (3)
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95: *build-Plan*: replace-ship (1)
100: *ask-pred-value*: M

(vessel-class ?ship ?ship-class) (2)

85: *ask-pred-value*:
(location-of ?ship ?ship-loc) (3)

85: *ask-pred-value*:
(vessel-class ?rship ?ship-class) (4)

85: *ask-pred-value*: (readiness ?rship Cl) 15)
85: *ask-pred-value*:

(location-of ?rship ?cur-rship-loc) (6)
85: *instantiate-var*: ?rship (7)
100: *pick-valua-suggested*: ?rship fox (8)
90: *build-.pan*: replace-ship (9)
80: *ask-.pred-value*:

(vessel-class ?ship ?ship-class) (10)
80: *ask-.pred-value*:

(location-of ?ship ?ship-loc) (11)
80: *ask-pred-value*:

(vessel-class ?rship ?ship-class) (12)
80: *ask-.pred-value*:

(readiness ?rship Cl) (13)
GO: *ask-pred-value*:

(location-of ?rship ?cur-rship-loc) (14)
80: *stib..action*: replace-ship sail (15)
75: *build-.plan*: sail (16)
80: *sub-.action*: replace-ship assign (17)
85: *sub-action*: replace-ship sail (18)
80: *build-plan*: sail (19)
85: *sub-action*: replace-ship assign (20)

Figure 9.4: Partial Tree 1ior Example Dl

also fail.) The *instantiate-% ar* node at 1iD.- (7) records that one of the agent's
possible plan-building moves when her plan contains such a free variable is to move to
instantiate it to a particular value. A subplan form of *instantiate-%ar* called *pick-.
value-suggested* covers those instances where Pragma is able to identify from the
partial interpretation a particular nominee for the value to which the agent may be
instantiating the variable, and in this case, the occurrence of Fox in the query, an
instantiation that fits the type constraints and preconditions on the ?rship free variable,
allows the system to use the *pick -vaue.suggested * foimn of *instantiate-var* to
model in line (8) the agent's p-3ssible consideration of Fox as a filler tor the
replacement ship slot. (As will be seen later, the system must resort to the other
subplan of *instantiate-i.ar*, *pick..at..random*, when the partial parse does not
suggest a value, as happens when that value is itself the wildcard.) A special heuristic
rule applies at line (8), triggered by the fresh instantiation to a value also found in the
partial parse, which explains why its ranking jumps back up to 100.

The *build-plan* node (9) underneath the * pick-. vaue.suggested * is like
the one in line (1) except that the ?rship variable is now bound to the Fox, rather than
to the generated constant rship#3. That means that at this level, the *ask..pred.-.alue*
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nodes (12-14) for the preconditions involving ?rship can now link to the query
operator of the partial interpretation, so that we get three possible answers from those
three nodes with the suggested values for the wildcards shown in Figure 9.5.

At node (12):
+T+ = class
+P+ = vessel-class

At node (13):
+T+ = readiness-rating
+P+ = readiness

At node (14):
+T+ = location
+P+ = location-of

Figure 9.5: Three Links from Example Dl

As it happens, there is only one other linking node reached by the search when the
cutoff is set at 50, a node within the subtree based on the sail action of replace-ship at
a sub-plan for sail-nuclear that includes the precondition (propulsion-type ?ship
nuclear). A link is found with score 55 to the *ask-pred-value* node for that
precondition. The system thus returns those four options, with the first three as equally
likely top-level possibilities. It is left to a possible post-process to make use of lexical
similarity between the lexeme that was wildcarded and lexicalizations of the different
possible logical fillers found, using that as an additional source of heuristic information
in deciding between them.

If this example is rerun with the cutoff lowered to 1, many more possible
links are identified. (With the lowered cutoff, the context query also finds additional
link nodes, but that does not affect the results here, since we are using only the highest-
ranked initial context node.) The full list, giving the score, plan, and matching
predicate for each, is shown in Figure 9.6.

80: replace-ship (vessel-class ?rship ?ship-class) (1)
80: replace-ship (readiness ?rship Cl) (2)
80: replace-ship

(location-of ?rship ?cur-rship-loc) (3)
55: sail-nuclear (propulsion-type ?ship nuclear) (4)
45: sai l-direct-conventional

(vessel-class ?ship ?class) (5)
45: sail-with-refueling

(location-of ?ship ?ship-loc) (6)
45: supply-part-by-ship

(location-of ?supl-ship ?supl-ship-loc) (7)
30: sail-direct-conventional

(vessel-class ?ship ?class) (8)

Figure 9.6: Full List of Links for Example D l

The three *ask-pred-value* nodes from the immediate instantiation within
replace-ship of rship to the Fox still lead the list, of course, but a number of further
links (5, 6, 8) are also found to nodes within the sail subtree besides the
pi'opulsion-type query located earlier. The vessel-class that is a precondition of
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sail-direct-con'entional (5, 8) is part of computing whether the location of the
damaged ship can be reached by the replacement ship without refueling; the
location-of the ship is important if refueling en route has to be arranged (6).

Line (7) shows a interesting case of a link to an entirely different area of the
plan tree. The suppl%-part-by-ship plan is part of repair-ship, an alternative to the
replace-ship node which covers all the other possibilitics. The link to this different
node proposes that the agent has moved from considering replacing the Sterett to
instead considering the option of repairing the damage and then retaining Sterett in its
slot in the battle group. One of the actions in the repair plan involves transporting the
replacement part to the Sterett, and one subplan for that is to use another ship for the
task. The ship to use as the supply ship is, in turn, an open variable in that plan, which
the system here supposes the agent may have instantiated to the Fox, and the location
of the supply ship is of course a precondition related to its availability for the task.
That interpretation of the ill-formed query is in fact a plausible but less likely one in
the circumstances, since it involves a much larger planning move away from the
previous context. In this case, the lowering of the cutoff brings to light only more
distant possibilities, ones that seem remote in comparison to those more highly ranked.

9.2.1.3 Example D2: What is the location of FIX?

The second example is much like the ttrst, except that a different word in the
utterance is garbled, the name of the vessel, rather than the name of its attribute, and
we are looking at the partial interpretation that has selected that garbled word as the
wildcard. The partial interpretation in this case is thus defined as in Figure 9.7.

(def-partial-parse *location-of- fix*
sentence "What is the location of FIX?"
vars (?w)
wildcards (+V+)
types ((?w position) (+V+ vessel))
bindings ()
pred-list ((ship-location +V+ ?w))
query-op (ask-value ?w (ship-location +V+ ?w))
ill-formed t)

Figure 9.7: Input for Example D2

Note that in this case the word location has been correctly understood as referring to
the predicate ship-location, since that is the only semantically relevant sense of the
word in this domain, and that means that the type of the wildcard that is its first
argument can also be restricted to vessel, even though the single-word NP that actually
refers to that vessel has been treated as a wildcard.

Figure 9.8 gives an abbreviated segment of the tree that Pragma explores in
linking to this ill-formed input. Note that in this case, the *instantiate-% ar* node (4) is
not expanded by a *pick -value-suggested*, since there is no value supplied in the
partial interpretation, so that the system has no indication of which ship the agent might
be intending to use. The result is that *pick-at.-random* branches are built (5, 8, 11,
14) for every vessel in the database that fits the preconditions in the replace-ship plan
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95: *build-plan*: replace-ship (1)
100: *ask-pred-value*:

(vessel-class ?ship ?ship-class) (2)
85: *ask-pred-value*:

(location-of ?ship ?ship-loc) (3)
85: *instantiate-var*: ?rship (4)
75: *pick-at-random*: ?rship biddle (5)
70: *build-plan*: replace-ship (6)
60: *ask-pred-value*:

(location-of ?ship ?ship-loc) (7)
75: *pick-at-random*: ?rship wilson (8)
70: *build-plan*: replace-ship (9)
60: *ask-pred-value*:

(location-of ?ship ?ship-loc) (10)
75: *pick-at-random*: ?rship truxtun (11)
70: *build-plan*: replace-ship (12)
60: *ask-pred-value*:

(location-of ?ship ?ship-loc) (13)
75: *pick-at-random*: ?rship fox (14)
70: *build-plan*: replace-ship (15)
60: *ask-pred-value*:

(location-of ?ship ?ship-loc) (16)
60: *sub-action*: replace-ship sail (17)
85: *sub-action*: replace-ship sail (18)

Figure 9.8: Partial Tree for Example D2

as a possible replacement vessel. (Not all are shown here.) A *pick-at-random*
branch would also have been built for the Sterett itself, since the replace-ship plan
does not currently test that the replacement ship not be the same as the damaged one,
but its readiness condition causes that branch to fail the precondition tests.

This example thus produces link nodes beneath replace-ship to *ask-pred-
value* queries of the location of the replacement ship for each possible filler for that

role that the agent might be considering, and the number of more distant links to the
location queries at sail-with-refueling and at supply-spare-by-ship is also multiplied.
While the links from Dl that referred to other predicates like readiness and
propulsion-type are avoided here because location needs to be matched exactly, there
are still many more resulting links in this case due to the size of the set of possible
fillers. Yet this is similar to the uncertainty of a human expert in similar
circumstances, when the only restriction is to the membership of a rather large set.
Again, lexical similarity measures and other heuristic information may be able to help
restrict the set of likely links.

I
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9.2.1.4 Example D3: Is Fox in the RED?

The partial interpretation for the query Is Fox in the RED? is shown in
Figure 9.9.

(def-partial-parse *is-fox-in-RED*
sentence "Is Fox in the RED?"
vars (?ship)
wildcards (+W+)
types ((?ship aegis-cruiser) (+W+ position))
bindings ((?ship fox))
pred-list ((ship-location ?ship +W+))
query-op (ask-truth (ship-location ?ship +W+))
ill-formed t)

Figure 9.9: Input for Example D3

When this query is run through Pragma, the identified links for the wildcarded word
are to assertions about the location of the Fox, a precondition that we have already seen
in a couple places in the plan tree, with the links suggesting that red is a garbled
version of Med. What sets this example apart is that it is phrased as a yes/no question,
rather than as a WH query. This means that its query operator is different, ask-truth
rather than ask-value, but because the location of the vessel happens to be the wildcard
variable that will therefore match with whatever the actual value in the database is, this
case ends up being handled much like example DI, with the exception that the query-
generating metaplan used beneath the *build-plan* node for replace-ship once the
*instanuiate-var* is handled is *check-pred-value* rather than *ask-pred-value*.

Because for these examples the system is running in the mode where
dependent variables are instantiated to their database values, the resulting link node, as
well as identifying a context in the plan tree that supports one possible form of this
ill-formed query, also associates with the wildcard +W+ whatever the actual location
of the Fox is recorded to be. Only if the agent was correct in her supposition, naturally,
would that value actually match the intention behind the wildcard value. Note that a
yes/no query like Is the FIX in the Med? where the ship name instead of the function
value is the wildcard item would interact differently with this database instantiation
mode. In that case, the effect would be that the set of possible fillers would be
restricted to those that actually meet the agent's stipulation. If the agent's supposition
is correct, the effect will typically be to substantially reduce the number of alternative
matches that must be considered. However, if the agent is incorrect, the desired link
with the instantiation to the Fox will not appear at all, since the location predicate will
fail to match the actual value for the Fox. Indeed, if the agent is unlucky enough to
choose an empty location, where neither the Fox nor any other vessel is currently
located, the system while operating in this mode will be unable to find any link for that
particular query. The SPA domain examples were run in the alternate mode, and this
issue will be raised again there, and discussed further in Section 9.5.1.

Another issue to note here is the dependence of the linking algorithm on the
exact predicate formulation used. While we are assuming that the parser would treat in
the Med as a simple location-of query, what would happen with a query about being

138



I ,

Report No. 7047 BBN Systems and Technologies Corporation

near the Med, where the actual logical form might be considerably more complex? An
important area for further work is extending the model so that the system can recognize
the logical connection between a related assertion like near the Med and the actual
form specified in the plan as the literal precondition.

9.2.1.5 Example D4: Does Thorn have on board a SHARE ER-211 relay?

In this next example, Does Thorn have on board a SHARE ER-211 relay?,
the logical form is more complex, as shown in Figure 9.10, since the wildcard is an
adjective that adds additional restrictions to an already complex NP. That additional3 meaning is coded by the parser into the single wildcard predicate +P+.

(def-partial-parse *share-relay*
sentence

"Does Thorn have on board a SHARE ER-211 relay?"
vars (?ship ?rel ?part-num)
wildcards (+P+)
types ((?ship destroyer)

(?rel relay)
(?part-num part-number))

bindings ((?ship thorn) (?part-num ER-211))
pred-list ((part-number ?rel ?part-num)

(+P+ ?rel)
(on-board ?rel ?ship)
(domain-pred +P+))

query-op (ask-truth (on-board ?rel ?ship))
n ill-formed t)

Figure 9.10: Input for Example D4

This example brings out the importance of the query-op field in the partial
interpretation representation, since there would otherwise be no way of identifying
which of the predicates was the subject of the yes/no query.

3 A portion of the tree expanded in searching for links to this query is given in
Figure 9.11. Note that no links are found for this query underneath the replace-ship
node (2) that encodes the context from the initial query, since the other predicates
about spare parts that are part of this query do not appear as preconditions to any of the
subplans or actions in the replace-ship branch of the tree. The only link in this case is
found by moving up from the initial context to the restore-slot-readiness node (1) and
then down the repair-ship branch (9) through supply-spare-part (11) and suppl%-
part-by-ship (13) to the *instantiate-var* (14) and *pick-value-suggested* (15)
nodes that model the conside-ation of the Thorn for the slot of the supply ship. Note
that the heuristic score of the *pick -value-suggested* (15) node is increased by the
special boost given when an open variable slot is instantiated to a value found in the
partial interpretation that is not yet included in the context model. Note also that the
Thom could not in any case have been instantiated over on the replace-ship side,
since, as a frigate, it would not have satisfied the preconditions there about being of the
same class as the damaged ship.
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85: *build-plan*: restore-slot-readiness (1)
95: *build-plan*: replace-ship (2)
100: *ask-pred-value*:

(vessel-class ?ship ?ship-class) (3)

85: *instantiate-var*: ?rship (4)
75: *pick-value-suggested*: ?rship fox (5)
70: *build-plan*: replace-ship (6)
60: *sub-action*: replace-ship sail (7)
85: *sub-action*: replace-ship sail (8)
75: *build-plan*: repair-ship (9)
65: *build-plan*: wait-for-repair (10)
65: *build-plan*: supply-spare-part (11)
55: *build-plan*: supply-part-from-depot (12)
55: *build-plan*: supply-part-by-ship (13)
50: *instantiate-var*: ?supl-ship (14)
90: *pick-value-suggested*: ?supl-ship

thorn (15)
85: *build-plan*: supply-part-by-ship (16)
80: *check-pred-value*:

(on-board ?part ?supl-ship) (17)

Figure 9.11: Partial Tree for Example D4

Once the instantiation at node (15) is made, the assertions in the supply-
part-by-ship plan match each of the assertions in the partial interpretation
representation with spare linking to the wildcard +P+, as shown in Figure 9.12.

(part-number relay-235 ER-211)
(+P+ relay-235)
(on-board relay-235 thorn)

Figure 9.12: Matching Assertions for Example D4

Note that it was because it was running in the mode where dependent variables are
instantiated from the database that the system was able, as this tree was being
expanded, to fill in some of the actual values used in the match. For example, at the
supply-spare-part node (11), it was able to retrieve from the database the part number
of the damaged part as recorded in the casualty report associated with the damaged
ship. If there had been more than one part required, a supply-spare-parts plan would
have been used, where the filler of that role is a set of parts. Again, at the
supply-part-by-ship node (13), the system retrieved from the database the actual serial
number relay-235 of the particular instance 'v :.h that part number that was in stock on
board the Thorn. If the Thom had had more than one part of that type on board,
separate *build-plan* nodes parallel to this one (16) would have been created for each
one. This close tie to the actual database values reduces the size of the tree of
possibilities while still making use of the implications for plan context of the actual
values used in the query. The disadvantage comes in the heuristic dependence on the
agent's knowledge being close to the database picture, and the difficulty of modeling
possible contexts that conflict with that. Again, this issue is considered further in
Section 9.5.1.
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This example also shows the importance of the presence of other assertions
to the correct identification of the query context. It is interesting to compare this query
with one like What is the location of Fox? that could be relevant either as part of a
replace-ship plan with the Fox as the replacement vessel or as part of supply-part-by-
ship with the Fox doing the supplying. The ambiguity in that case is due to the lack of
reference in the query to any assertions that are specific to only one of the plans, and it
is resolved by depending more heavily on the previous context and selecting the
nearest link node. In this case, the other assertions in the query provide constraints that
allow the system to identify the intended context, even though it is not the closest one.
This is an example of the general rule that the more context available in the partially-
understood query, the easier it is to identify the desired link for it in the plan context.

9.2.1.6 Example D5: How many BRLISERS are CI?

I This last example from the damaged ship domain, How many BRUISERS are
C1 ?, includes a sample of a set type variable and requires the use of the *add-boolean-
constraint* and *ask-cardinality* metaplans from the group of metaplans that model
plan-building moves that are part of gathering information to support the choice of a
particular value in a later *instantiate-var* node. The partial interpretation
representation for this query is given in Figure 9.13.

(def-partial-parse *how-many-bruisere-are- cl*
sentence "How many BRUISERS are Ci?"
vars (?vset +C+)
wildcards (+C+)
types ((?vset (set vessel)) (+C+ vessel-class))
bindings ()
pred-list ((vessel-class ?vset +C+)

(ship-readiness ?vset Cl))
query-op (ask-set-cardinal.ity ?vset)
ill-formed nil)

Figure 9.13: Input for Example D5

3 The how many query is rendered using the ask-set-cardinality operator applied to the
variable vset, whose type is sets of vessels. Note that readiness in this domain applies
only to vessels, so that even though the word bruisers is being treated as a wildcard,
the parser is able to deduce the proper type for vset from the Cl restriction applied to
it. When predicates like vessel-class are applied to a set variable, they are given a
distributive reading as applying to each member of the set.

A portion of the plan tree searched in this example is given in Figure 9.14.
Once again, the search begins at the previous link node (2) and immediately moves up
to replace-ship. The successful children of *instantiate-var* from the previous
examples like *pick-value-suggested* are not even explored in this case, since the
system can predict from the query operator that this example must involve a
*consider-var-as-set* metaplan like that in line (4) which models the agent's chc ice tocollect data about the set of possible fillers for the replacement ship slot. The
*consider-var-as-set* metaplan introduces a generated symbol rship#3 to represent

3 that set.
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95: *build-plan*: replace-ship (1)
100: *ask-pred-value*:

(vessel-class ?ship ?ship-class) (2)

85: *instantiate-var*: rship (3)
80: *consider-var-as-set*: rship#3 (4)
75: *add-boolean-constraint*:

(ship-readiness rship#3 Cl) (5)
65: *ask-set-data* rship#3 (6)
60: *ask-set-cardinality*: rship#3 (7)
70: *add-boolean-constraint*:

(vessel-class rship#3
aegis-cruiser) (8)

60: *ask-set-data* rship#3 (9)
55: *ask-set-cardinality*: rship#3 (10)

Figure 9.14: Partial Tree for Example D5

The *add-boolean-constraint* metaplan is used here to model the agent's
use in the explicit description of the set appearing in the query of one of the constraints
from the plan preconditions. Note that set queries that do not include all of the
applicable preconditions can still be appropriate plan-building moves; the agent in this
case could have asked about the total number of cruisers, without adding the readiness
restriction, or, more far-fetched, asked about the number of C1 vessels of all classes.
There are heuristic principles not yet captured in the system that point out that certain
orders for constraint application make more sense than others, for example, that
constraints that cut down the size of the set most are usually applied first. Thus, the
reason that asking for all Cl vessels seems far-fetched is because the weaker
ship-readiness restriction has been applied first, ignoring the stronger vessel-class
restriction that would have cut down the set size much further. Nevertheless, it is clear
that the system should account separately for whatever collection of restrictions the
agent decides to include in a query, so Pragma models each with its own
*add-constraint* node. However, to prevent multiple linking branches in the plan
tree that differ only -, the order of application of a set of *add-constraint* metaplans,
the system does impose an arbitrary (alphabetical) order on the *add-constraint*
nodes within any branch.

In this example, the ship-readiness constraint (5) is the first to be applied.
Immediately under that, we see the system's representation (6-7) of the possible query
How many C1 vessels are there?, but that does not link with the current partial
interpretation, which assumes that the wildcard specified some vessel-class restriction
on the set of vessels. That additional restriction is modeled by the *add-boolean-
constraint* in line (8), so that the query in lines (9-10) does provide matches for each
of the assertions in the query representation.

Query metaplans like *ask-set-cardinality* or *list-fillers* model queries
that are suppikmental to a particular *instantiate-ar* metaplan, and they are usually
followed in the plan-building by moves (whether or not those moves become explicit to
the expert in the form of queries) that make use of the data gathered thereby to select a
particular instantiation for the open variable. The agent world knowledge heuristics
discussed in Section 7.2.2 could be used to help predict the agent's next moves more
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I precisely based on the previous set data queries and their answers.

59.2.2 SPA Domain Examples

9.2.2.1 Initial Context Description

A second scenario with which the Pragma system was tested, still within the
broad domain of naval force deployment, had to do with the prosecution of SPAs,
which might be thought of as Sonar Probability Areas, regions of the ocean where a
sonar system has detected sounds which could be from an enemy submarine.
"Prosecution" of a SPA involves the deployment of various combinations of aircraft,
ships, or submarines to listen for and try to locate the possible enemy sub. The typical
aircraft assigned to this mission are VP squadrons, while the most useful surface
vessels are those that can tow arrays of microphones, one variety of which are called
TAGOS vessels. In this scenario, the commander may make manual assignments of
assets to SPAs, asking questions about locations or readiness of the units she is
considering deploying, but she also has access to a computer system that can estimate
the probability of detection for a particular SPA given a certain assignment of assets
and suggest initial assignments of available assets to SPAs.

3It was within this SPA domain that Pragma was demonstrated as part of
BBN's Janus natural language system. Although the wildcard parsing phase needed to
be manually simulated for the demonstration, which limited the system to a preselected.set of possible queries, Pragma was able to track the user's plan context through a
sequence of well-formed queries in this domain and then, presented with ill-formed
examples, to locate matching contexts for them in the metaplan tree that in turn
suggested corrections for the wildcard elements. Those corrections in turn were
substituted into the WML logical forms for the queries which then progressed through
the remaining stages of processing, returning the intended system results.

I One major difference between this set of examples and those from the
damaged ship scenario is in the way the system is handling dependent variables in the
plans as the plan tree is expanded. In the damaged ship examples, the system was
running in a mode where such variables were bound as encountered to values found in
the database. Thus, in that mode, if the replace-ship plan refers to the location of the
damaged ship that was one of its arguments, the value for that ship's location was
bound to the actual location retrieved from the database. As pointed out previously,
that approach allows maximum use in plan tracking of the actual constants used by the
agent when they are correct. Thus a query like

Which ships are near Gibralter?

can easily and unambiguously be identified as relevant to the replace-ship plan if the
location of the damaged ship has already been instantiated to Gibralter (or even near
Gibralter, if a means of handling deductively-related assertions is used). However,
instantiation to the actual database values can prevent a possible match from being
found in cases where the agent's beliefs are not correct. If the agent incorrectly
believed the damaged ship was near Sicily, the query

3 Which ships are near Sicily?
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might turn up, but Pragma could not match such a query while running in this mode.
In fact, this mode of instantiating from the database also prevents the modeling of any
yes/no question whose answer is "No", since the logical specifications for an incorrect
state of affairs cannot be matched.

To correct this problem, Pragma was run for these examples in a new mode
where such variables were bound not to values from the database but to newly
generated constants of the same sort used for representing open variables that the agent
has not yet instantiated. This effectively hypothesized for each branch of the plan tree
that the agent might be considering that the values for the dependent variables were
consistent with the plan preconditions, whether or not that was the actual case in the
database. For example, if the agent mentioned the cruiser Bainbridge in a query in a
replace-ship context, the *instantiate-var* node that models the instantiation of the
rship variable to the Bainbridge would supply a generated symbol like readiness#4 for
the value of ship-readiness for the Bainbridge. Because that symbol is treated as a
variable, it would match in the precondition testing phase with the C 1 readiness value
required of the replacement ship, so that the instantiation would be allowed to continue
even if the Bainbridge was actually C4, on the grounds that the agent might think it
was C t and thus be pursuing this plan-building path.

Note that in matching with the partial interpretation these assumed variables
that have in effect been instantiated from the preconditions can then still be used where
appropriate to suggest possible fillers in cases where a restriction value has been
wildcarded. For example, if the query were

List the I ships near Sterett?

where the lexeme I was the wildcard, the readiness#4 variable would be bound to CI
from the preconditions, which in turn could be used to suggest a replacement for the
wildcard.

The advantage of this approach is that any plan, even one based on incorrect
premises, can be modeled in the plan tree. The related disadvantage is that the plan
tree can become much larger, particularly when there is an instantiation to all possible
values, since a full branch will be built for every instance of the type, even though only
a small number of those may actually be suitable candidates when the actual database
values of the preconditions are considered. While the Pragma system at the moment
can only operate fully in one mode or the other, the goal is a flexible combination of
the two approaches, depending on the metaplan context and on the heuristic likelihood
of the agent's awareness of the actual status of the given preconditions. The issue is
further discussed in Section 9.5. 1.

The initial context for the examples in this SPA domain was created by
matching to the well-formed query

Which TAGOS are assigned to SPA 1?

a request that assumes that an initial assignment of assets to SPAs has been made,
either manually or by the program, and that the agent is querying the current planned
assignment of one particular class of asset, the TAGOS towed-array vessels, to SPA I
in order to acquire data to be used in evaluating or suggesting rearrangements to the

144



I
R eport No. 7047 BBN Systems and Technologies Corporation

current assignments. The partial interpretation for this context-setting query is shown
in Figure 9.15.

(def-partial-parse *which-tagos-assigned-to-spa-l*
sentence "Which TAGOS are assigned to SPA 1?"

I vars (?a-spa ?tset)
wildcards ()
types ((?a-spa spa) (?tset (set-of tagos-vessel)))
bindings ((?a-spa spa-i))
pred-list ((assigned-to ?tset ?a-spa))
query-op (ask-value ?tset

r n(assigned-to ?tset ?a-spa))
ill-formed nil)

3 Figure 9.15: Context Query in SPA Domain

The variable ?a-spa is bound to SPA 1, while tset is an unbound variable that the
query seeks to bind to the set of TAGOS vessels that are assigned-to SPA 1.

1A portion of the tree explored in linking to that query is shown in
Figure 9.16. The top-level goal in this domain is respond-to-spas (2), which includes
the two subplans auto-assign-assets (3) for approaches that use the program to
produce the assignments and manual-assign-assets (7) for adding or deleting
assignments by hand, possibly following a run of the automatic program. Within
manual -assign-assets comes manual-assign-to-spa for approaches that consider a
single SPA from the current set at a time, and within that separate subplans for adding
assignments of each class of assets (10, 12, 14) and for querying the probability of
detection predicted by the model. Each assignment plan includes an action for
querying the number of assets of that type currently assigned (11, 13, 15), as well as
actions (not shown here) for making the assignment in the model and for actually
deploying the asset to the SPA's location,

In this initial context query, a match is found by following the
manual-assign-to-spa (8) path and then modeling an instantiation (16) of the variable
representing the chosen SPA to SPA-I, with that value being suggested by its
occurrence in the query (17). Once the instantiation has been made, a link is found to
the *as-pred-value* node (25) underneath query-tagos-assignments (24), modeling
that the user is asking about the number of TAGOS vessels assigned to SPA 1 as part
of a plan to perhaps assign more manually.

With each of these examples in this section, Pragma was run first with the
heuristic cutoff at the default of 50, and then again with the cutoff set down to 1, and
the results for each case will be given. When the initial context example is run with the
cutoff set to 50, as the tree above shows, a single link node is found with a heuristic
score of 55, and that remains true when the cutoff is lowered to 1; although a much
larger portion of the tree is then explored, that is still the only successful link.

I
i
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100: *root-plan*: respond-to-spas (1)
95: *build-.plan*: respond-to-spas (2)
85: *build-.plan*: auto-assign-assets* (3)
70: *build-.plan*: consider-asset-class (4)
70: *build..plan*: add-restriction (5)
70: *build-plan*: run-tradeoff-model (6)
85: *build-plan*: manual-assign-assets (7)
75: *build-plan*: manual-assign-to-spa (8)
65: *build.plan*: query-spa-pd (9)
65: *build-.plan*: assign-sub-to-spa (10)
50: *build-.plan*: query-sub-assigrnents (11)
65: *build-plan*: assign-tagos-to-spa (12)
50: *build-plan*:

query-tagos-assignents (13)
65: *build-.plan*: assign-vp-to-spa (14)
50: *build-plan*: query-vp-assignments (15)
65: *instantiate.var*: ?a-spa (16)
100: *pick-.value-suggested*:

?a-spa SPA-l (17)
90: *build-plan*:

manual-assign-to-spa (18)
80: *build-plan*: query-spa-pd (19)
80: *build-plan*: assign-sub-to-spa (20)
65: *build.-plan*:

query-sub-assignments (21)
55: *ask-pred-.value*:

(assigned-to ?subs ?a-spa) (22)
80: *build-plan*:

assign-tagos-to-spa (23)
65: *build-plan*:

query-tagos-assignnents (24)
55: *ask-pred-value*:

(assigned-to ?tagoses
?a-spa) (25)

80: *build-.plan*: assign-vp-to-spa (26)
65: *build-plan*:

query-vp-assignments (27)
55: *ask-pred-value*:

(assigned-to ?vps ?a-spa) (28)

Figure 9.16: Partial Tree for SPA Context Query
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9.2.2.2 Example SI: What is the HEADINESS of Assertive?

This example is similar to example D I in the damaged ship context in having
the wildcard affect the name of the attribute of the ship that is the subject of the query.
The partial interpretation representation is shown in Figure 9.17.

(def-partial-parse *HEADINESS -of-Assertive*
sentence "What is the HEADINESS of Assertive"'
vars (?a-tagos ?val)
wildcards (+P+ +T+')
types ((?a-tagos tagos-vessel) (?val +T+))
bindings ((?a-tagos assertive))
pred-list ((+P+ ?a-tagos ?val)

(domain-pred +P+) )
query-op (ask-value ?val (+P+ ?a-tagos ?val))
ill-formed t)

Figure 9.17: Input for Example SI

In this domain, since the Assertive is a TAGOS vessel, the links that are found are to

relevant attributes of TAGOS vessels for plans related to assigning them to SPAs.

An abbreviated portion of the plan tree for this example using the initial
cutoff of 50 is shown in Figure 9.18.

90: *build-plan*: assign-tagos-to-spa (1)
95: *build-plan*: query-tagos-assignments (2)
100: *ask-pred-value*:

(assigned-to ?tagoses ?a-spa) (3)
80: *instantiate-.var*: tagos (4)
100: *pick-value-suggested*: assertive (5)
90: *build-plan*: assign-tagos-to-spa (6)
80: *ask-pred-value*:

(ship-readiness ?tagos rdy#4) (7)
80: *ask-pred-value*:

(location-of ?tagos loc#5) (8)
80: *build-plan*: query-tagos-assignments (9)
80: *build-plan*: assign-tagos-in-model (10)
80: *build-plan*: deploy-tagos-to-spa (11)
70: *ask-pred-.value*:

(location-of ?tagos loc*6) (12)
70: *ask-pred-.value*:

(speed-of ?tagos speed#7) (13)
70: *build-plan*: sail (14)
65: *build-p1-n*: sail-conventional (15)
65: *build-pln*: sail-nuclear (16)
55: *ask-pred-value*:

(propulsion-type ?ship prop#8) (17)

Figure 9.18: Partial Tree for Example SlI with Cutoff 50
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The search process in this case proceeds by moving up to the assign-tagos-to-spa
parent (1) of the previous context and then down to an instantiation (4) of the open
variable in that plan for the TAGOS vessel to be assigned, an instantiation suggested
(5) by the occurrence of Assertive in the query. Given that instantiation, there are two
direct preconditions of assign-tagos-to-spa that can link to the ill-formed query, one
for ship-readiness (7) and one for location-of (8). One of the subactions within
assign-tagos-to-spa is then the deploy-tagos-to-spa plan (11) that models planning for
actually sailing the TAGOS vessel to the location of the SPA and using it to try to find
the submarine. That deploy plan includes two further preconditions (12, 13) that link
to this query, one of which repeats the earlier location-of and the other of which refers
to the speed-of the TAGOS vessel. (Note that only the preconditions whose form
matches that in the partial interpretation and thus that can link to it are being shown.)
Finally, there is one further precondition within the deeper plan of sail-nuclear that is
also reached with this cutoff, a test of the propulsion-t- pe (17) of the TAGOS vessel
in considering sailing it to the SPA location. Thus, with the cutoff at 50, a total of 5
links are identified, with scores ranging from 80 to 55.

When the cutoff is lowered to 1, many more distant link nodes are identified,
bringing the total number to 26, ranked from 80 to 5. A few of the newly identified
links come from searching more deeply within the sail action of deploy-tagos-to-spa,
where, as in example Dl, sail-direct-conventional includes a vessel-class precondition
and sail-with-refueling includes a location-of precondition. However, the majority of
the newly identified links ai, found in alternate branches of manual-assign-to-spa in
wticn the tree SPA variable is bound to other SPAs than SPA 1. The relevant tree
fragment is shown in Figure 9.19.

55: *build-plan*: manual-assign-assets (1)
60: *build-plan*: manual-assign-to-spa (2)
65: *instantiate-var*: ?a-spa (3)
70: *pick-value-suggested*: ?a-spa spa-i (4)
75: *build-plan*: manual-assign-to-3pa (5)
55: *pick-at-random*: ?a-spa spa-2 (6)
45: *build-plan*: manual-assign-to-spa (7)
55: *pick-at-random*: ?a-spa spa-3 (8)
45: *build-plan*: manual-assign-to-spa (9)

Figure 9.19: Additional Partial Tree for Example S I

Recall that the link node for the initial context query was found underneath the
*pick-value-suggested* node (4) that bound the SPA variable to SPA 1. All the links

for the current query that were found when the cutoff was set to 50 were within that
branch, since the alternative instantiations to SPA 2 and SPA 3 (the current SPA
database contains 3 SPAs) on lines (6) and (8) involved heuristic scores below the
cutoff. However, when the cutoff is set down to 1, the search does explore those
alternate branches deeply enough to model instantiation of the TAGOS variable to
Assertive in the context of assigning TAGOS vessels to those other SPAs and thus
finds successful link nodes there as well. The context mechanism thus behaves in this
case as one would expect, with links within the previous context in which SPA I is the
focus receiving higher scores than the more remote links that assume the agent has
meanwhile changed her focus of attention to a different SPA in the domain.
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9.2.2.3 Example S2: What is the detection probability for SPA I?

IIn the query What is the detection probability for SPA I?, the question of
SPA instantiation is central, since the wildcard item is the I that the agent, thinking of
the Roman numeral, entered for SPA 1. The partial interpretation representation is
given in Figure 9.20.

(def-partial-parse *detection-probability-for-SPA-I?*
sentence

"What is the detection probability for SPA I?"

vars (?pd)
.wildcards (+S+ +ID+)
types ((+S+ spa)

(+ID+ spa-identifier)
(?pd prob-of-detection))

bindings ()
pred-list ((spa-pd +S+ ?pd)

(identifier-of +S+ +ID+))
query-op (ask-value ?pd (spa-pd +S+ ?pd))
ill-formed t)

i f e Figure 9.20: Input for Example S2

Because of the way SPAs are identified in the logical representation, the single
wildcard in this query results in two wildcards in the logical form, one for the SPA
itself and one for number which is its identifier.

The same combination of locality effects and heuristic cutoff predominates in
this case as in the previous query, so that with the cutoff at 50, the only link found is
that to the query-spa-pd node for the current SPA 1, which was the instantiation
inherited from the previous context. When the cutoff is lowered, the system then also
identifies link nodes within the othei instances of manual-assign-to-spa where the
SPA is instantiated using *pick-at-.random* to each of the other SPAs in the database,
giving 3 additional link nodes. Because of the dependent variables mode being used
for these examples, the system also explored the path where the free variable for the
SPA being considered was left set to the generated symbol, and there was also a link in
this case to that branch. While such links do not provide any suggested corrective
information for the wildcard, they do model the possibility that the agent may by
mistake have intended a SPA ID number that does not correspond to any SPA in the
actual database, a possibility that the system does need to keep in mind.

One factor limiting the number of link nodes in this particular example was
the requirement that the spa-pd predicate, which occurs only seldom in the tree, be
matched literally. L is an important fact in this effort to make maximal use of partial
information that a single element of the partial interpretation sometimes will be rare
enough in the tree of possible plan-building moves that it alone is able to luinit radically3 the number of possible links.

1
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9.2.2.4 Example S3: What is the SAW readiness of Assurance?

In addition to the overall readiness rating between Cl and C5 assigned to
each vessel, there are a set of mission readiness ratings with three-letter abbreviations
that describe its current ability to perform particular missions like mobility (MOB),
Pnti-submarine warfare (ASW), and anti-surface warfare (ASU). In this example,
What is the SAW readiness of Assurance?, the name of one of these mission readiness
areas is the wildcard item, as shown in Figure 9.21.

(def-partial-parse *SAW-readiness-of-Assurance?*
sentence "What is the SAW readiness of Assurance?"
vars (?assur ?mrdy)
wildcards (+W+)
types ((?assur tagos-vessel)

(?m.rdy mission-readiness-rating)
(+W+ mission-area))

bindings ((?assur assurance))
pred-list ((mission-readiness ?assur +W+ ?mrdy))
query-op (ask-value ?mrdy

(mission-readiness ?assur +W+ ?mrdy))
ill-formed t)

Figure 9.2 1: Input for Example S3

The mission-readiness predicate expresses for a given vessel and readiness area the
appropriate readiness rating.

The results for this example agai-t point out the importance of context and the
usefulness of functions within the partial interpretation that occur only rarely in the
plan tree. In this case again a single link node is identified when the cutoff is set at 50,
an *ask-pred-value* node within the assign-tagos-to-spa plan for the precondition
(mission-readiness ?a-tagos as -mission-area ?m-rdy), because ASW is the only
mission area referred to in the preconditions of SPA-related plans. When the cutoff is
lowered to 1, three additional link nodes show up that are due to *pick-at-random*
instantiation of the SPA free variable to each of the known SPAs, as well as the one to
the branch in which the SPA itself is left uninstantiated.

One interesting feature of this example is that while the differences between
the identified links are relevant for specifying the new plan context, they make no
difference in terms of suggesting possible corrections for the actual ill-formedness,
since the corrected meaning representation for this utterance would be the same in each
of the contexts. With a rich context model, it is naturally true that many of the
distinctions about which information is being stored end up in particular examples to
be irrelevant, but the fact that the same issue was crucial in determining the suggested
corrections in the previous example (S2) demonstrates the usefulness of such of model.

150



Report No. 7047 BBN Systems and Tecnnologies Corporation

9.2.2.5 Example S4: Which TAGS are assigned to SPA 2?

In this final example, Which TAGS are assigned to SPA 2?, the query
suggests a change iui the agent's focus from the previous query's SPA 1 to SPA 2.
That change in focus is clear in the query itself, shown in Figure 9.22, since the
wildcard affects the class of asset assigned, but not the SPA to which it is assigned,
which is specifically bound to SPA 2.

I (def-partial-parse *TAGS- assigned-to- spa-2*
sentence "Which TAGS are assigned to SPA 2?"
vars (asset-set a-spa)
wildcards (+C+)
types ((asset-set (set-of asset))

(a-spa spa)
(+C+ asset-class))

bindings ((a-spa spa-2))
pred-list ((assigned-to asset-set a-spa)

(class asset-set +C+))
query-op (ask-value asset-set

(assigned.to asset-set a-spa))3 ill-formed t)

Figure 9.22: Input for Example S4

3 On the first pass, with the search cutoff set to 50, Pragma is unable to find
any link nodes for this query. This is because, as in other examples, that cutoff
provents the search from going outside the previous context branch in which the SPA
variable is bound to SPA 1, but unlike the other examples, no link is possible within
that previous branch since nothing is found to match the occurrence of SPA 2 in the

Iy When the cutoff is lowered on the second pass, the situation is different, as
shown in Figure 9.23.

3 70: *pick-value-suggested*: a-spa spa-2 (1)
65: *build-plan*: manual-assign-to-spa (2)
60: *build-plan*: assign-sub-to-spa (3)
50: *build-plan*: query-sub-assignments (4)
40: *ask-pred-value*:

(assigned-to ?subs a-spa) (5)
60: *build-plan*: assign-tagos-to-spa (6)
50: *build-plan*: query-tagos-assignments (7)
40: *ask..pred-value*:

(assigned-to ?tagoses a-spa) (8)
60: *build-plan*: assign-vp-to-spa (9)
50: *build-plan*: query-vp-assignments (10)
40: *ask-pred-value*:

(assigned-to ?vps a-spa) (11)

Figure 9.23: Partial Tree for Example S4
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The system now does reach the new *pick- value-suggested* node (1) that models the
instantiation of the SPA to SPA 2, and within that branch, as expected, 3 link nodes are
found, one for each of the three possible classes of assets, TAGOS, VP, and subs. The
link nodes (5, 8, 11) come beneath the assign-X-to-spa children of manual-assign-to-
spa (2), and all three have a score of 40.

This example raises an important theoretical question concerning the ability
of the system to model alternate perspectives or approaches in the same plan domain.
Note that while the domain plans used by Pragma here group together all the asset
assignments for a particular SPA, an alternative perspective would group together all
the assignments of a particular class of assets to all the SPAs, and that second approach
would have had an advantage in handling this example. This issue is discussed further
in Section 9.4.

Another issue raised by this example is the desirability of incorporating into
the heuristic search control process in some way information about how many link
nodes have already been identified. Such information could be used in part to avoid
cases where the search stops before any link node has been found, as happened in this
example when using a cutoff of 50. This is discussed in more detail in Section 9.5.2.

9.3 Factors that Affect Example Difficulty

This and the following sections now proceed to analyze the behavior of
Pragma on these sets of examples, drawing conclusions from these results about the
kinds of examples that Pragma can handle best and about the features of the system
design that were most important or problematic in handling them. The first dimension
on which the example results will be analyzed is to identify factors in the examples that
make them more or less amenable to this approach to ill-formedness processing. Three
classes of such factors can be seen in these examples, first, those that help to
characterize the inherent degree of ambiguity resulting from the given wildcard word,
second, those that affect the ohility of the metaplan context to limit that ambiguity, and
third, factors in the pragmatics of the current query that make it easier or harder to
bring the information in the context tree to bear on resolving the ambiguity. Together
these factors help to describe for given contexts and errors the chance that pragmatic
context will be able to uniquely resolve the error.

9.3. 1 Inherent Ambiguity of the Wi!dcard Word

The first class of factors are those that determine what might be called the
inherent ambiguity of the wildcard word, that is, the size of the set of possible
resolutions for it. That set is dependent both on the syntactic and semantic constraints
from the remainder ot the sentence formulated in the partial interpretation and on the
constraints of the domain, including facts like the number of frigates in existence. The
size of that set is important because a successful resolution of the ill-formedness
requires that the pragmatic context provide sufficient additional constraint to identify
the intended referent from within that set, and the size of the set from which it must
choose is thus one measure of the difficulty of the task that is left to pragmatics
Because the system only needs to consult pragmatics when the syntactic and semantic

152



I

Report No. 7047 BBN Systems and Technologies Corporation

information from the rest of the sentence leaves it ambiguous, there is a trivial class of
examples where syntactic and semantic information themselves uniquely determine the
intended referent of the wildcard. This section considers ways of predicting for
ambiguous examples the size of the possible resolution set.

I The primary identifiable factor that can be used to predict the inherent
ambiguity is the part of speech role that the wildcard element plays in the query.
(While the wildcarded word itself is ignored, the successful wildcard parse that
generated the partial interpretation implies a syntactic role for it.) Figure 9.24
summarizes the data from these examples.

Possible Identified
Ex. Wildcard Part of Speech Links Links

D1 VOCATION N, functional 8 4
D2 FIX NPR 20+ 20+
D3 RED NPR 20+ 1
D4 SHARE ADJ 3 1
D5 BRUISERS N, entity class 20+ 1
Si HEADINESS N, functional 8 5
S2 I Integer identifier 3 1
S3 SAW N, in NN compound 6 1
S4 TAGS N, entity class 3 0

Figure 9.24: Summary Results with Wildcard Part of Speech

For each example, the figure shows the part of speech of the wildcard, an estimate of
the number of different resolutions that could have resulted if the assertion containing
the wildcard had been tested for possible links to every assertion found anywhere in the
plan tree, and the actual number of resolutions suggested by links identified in a search3 from the previous context node limited by a heuristic cutoff of 50.

One striking thing initially about this data is the limited number of parts of
speech represented. This is primarily a side effect of the single-word error assumption
fc .alias errors and the fact that pragmatics is not consulted regarding errors resolvable
on syntactic and semantic grounds. After any single word in a sentence is wildcarded,
the parser then searches for interpretations of the sentence applying all available
syntactic and semantic constraints. Only those examples parse where there is some
filler for the wildcard slot that fits with the rest of the sentence, and pragmatic context
is resorted to only when there are multiple fillers that fit. This explains the preference
for open class words among the wildcards that require pragmatic disambiguation, since
a closed class wildcard is much less likely to produce a partial interpretation with
multiple possibilities than an open class one. There are cases of such ambiguity even
among closed class words, for example. the different articles like the, these, or those
that could fill the place of the wildcard in

Deploy all of **** ships.

Hov&ever, most single closed class words are detemined enough by constraints from
the rest of the sentence to be able at least to severely restrict their possible fillers from
syntactic context if wildcarded, while almost any open class wildcard will allow for
many possible instantiations, as in
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Deploy all of the ****

In addition to the preference for open class words, the naval database domain further
restricts the classes of alias errors found. While entity-class nouns and functional
nouns abound in this domain, adjectives are not common and verbs are quite rare.
These two factors together account for the unusual part of speech distribution of the
examples as a whole.

As for the pattern of number of possible links by part of speech, although
part of speech is only one of many factors affecting the different results, the table does
suggest some connection, mainly in terms of the number of possible fillers for
wildcards of a particular syntactic class. Thus, the greatest ambiguity was found in
examples D2, D3, and D5, with either a proper noun that could match with any cruiser
name or ocean region or a common noun naming an entity class from all the possible
ship types. That fits with our intuition that proper nouns and class-naming common
nouns are intended to pick out single members of large possible sets. The functional
nouns from examples D I and S I had 8 possible links in the metaplan tree, the number
of attributes of the given entity class relevant to related domain plans. We would
expect the relevant functional nouns to be restricted to a smaller set than proper nouns
or entity class names. Only a few possible links were found in the remaining cases, 3
for the adjective (D4) and 6 for the noun compound (,3) cases, The most difficult
errors are clearly those where the wildcarded word leaves a large set of possible fillers,
and the part of speech data indicates that that is more likely to be true of proper nouns
and class-naming nouns than of functional nouns, adjectives, or nouns in noun
compounds.

9.3.2 Degree of Contextual Constraint

While the previous section considered part of speech as an indication of the
size of the semantic space opened up by the wildcard word, we consider factors Lre
that help to predict the degree of constraint that the pragmatic context will be able to
supply for different classes of wildcard. The main factor here seems to be the
distribution in the plan tree of the possible matches for the wildcard itself in terms of
whether they are clustered or widely spread as an a priori indication of the likelihood
of finding multiple ambiguous link nodes. While these examples do not provide the
data for any developed classification scheme of referent occurrence patterns in the
metaplan tree, they do point out criteria that are useful for judging example difficulty.

Referring again to Figure 9.24, the most noticeable difference of this type
can be seen between example D2, where all of the possible links were also identified as
links in the pragmatic context, and examples D3 and D5, which had similarly large
numbers of possible links in the plan tree as a whole, but where the contextual search
in those cases only identified a single link as relevant. The difference there was
because D2 occurred in a pragmatic context containing a free variable, so that the
wildcard could match to any possible instantiation of it, while the contexts for D3 and
D5 had only single, already-instantiated values for entities of the wildcard class. There
was thus a significant difference based on the pattern of occurrence within the tree of
the different classes of entities. While the instances of cruiser occurred tightly bunched
in the variable instantiation context, so that the context was not able to disambiguate
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them, the locations and class names tended to be distinguishable by plan context. This
difference seems as much a feature of the context tree, based on which items are
determined at what point of moving down its branches, as it is of the semantic class of
the entities themselves, and thus probably cannot be predicted by class alone.

I This difference in resolving power of the pragmatic context is also visible in
the other examples, though more weakly. The context was able to reduce the 8
possible links for the functional nouns in examples DI and SI to 4 and 5 respectively,
the number of ship attributes that were referenced in plans closely related to the
previous context. The ADJ and integer identifier in examples D4 and S2 that had 3
possible links were restricted by context to a single one, while example S4, also with 3
possible links, found no link at all in context due to the failure of the rest of the query
to link to any node in the area of the previous context. In comparison to the strong
contrast between examples D2 and D3, these seem to be cases where the possible
fillers are fairly evenly distributed in the tree, giving the plan context a fairly strong
resolving power. The greater the typical dispersion of the possible matches, the more

likely it will be that the heuristic search will be able to isolate a single most likely link
node, while entities that occur in clustered form will probably not be fully
disambiguated by the plan tree approach.

1 9.3.3 Logical Step Size

The third dimension suggested by these examples by which to characterize
example difficulty is a pragmatic feature of the new query's relationship to the
previous context and refers to what might be called the step size, or logical distance
between the context of the previous and current queries. A rough measure of that
distance in the plan tree model is given by the number of metaplan nodes that must be
traversed to reach from the one context to the other. The intuition here, of course, is
that queries that are closely related to their previous contexts stand a much better
chance of finding as highest-ranked the intended link nodes in the plan tree, a better
chance than do those that represent a substantial logical jump from the previous
context. When the system has to traverse many nodes to reach the correct link, it is
more likely either to find a nearer false match or to be stalled by the heuristic cutoff.

The SPA I wildcard in example S2 is one example of this. If the previous
context of this query was already on the plan tree branch where the SPA variable was
bound to SPA 1, then the intended link is found easily, but if that variable is unbound
or bound to some other SPA in the previous context, then the proxirmy infomiation in
the tree can no longer supply the desired result. This matches expectations from
human performance, where a sequence of queries that makes gradual movement
through the plan tree eases the hearer's plan modeling task and allows more
cooperative responses than one that makes large jumps. It seems that that is why
agents who are making a query that involves a large jump from the previous context
will often add data to their utterance to inform the expert of the new context, the kinds

I of statements modeled by the inform class of metaplans described in Section 6.7.

Thus the predicted applicability of metaplan ill-fomiedness resolution can be
based in part on the kind of wildcard involved, the number and distribution in the plan
tree of possible matches, and the logical step size from the previous to current queries
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giving the distance over which the search must be sustained to locate the dt-sired link
node. The results for each factor seem to fit with our intuitive expectations as to which
kinds of ill-formedness and context would be harder to resolve.

9.4 A Theoretical Issue: Modeling Alternate Perspectiies

Most of the examples with which Pragma has been tested are cases where the
organization of the domain plans in the plan tree seems to model successfully the
organization of the agent's approach toward the problem. However, example S4,

Which TAGS are assigned to SPA 2 9

is an interesting exception where it seems that the agent is exploiting an alternate plan
structure or perspective on the problem, and that Pragma's failure to handle that case
well stems from that clash of perspectives. This result raises an imp rtant question that
suggests possible extensions to the metaplan model to take account of alternate
organizational patterns in the domain plans for a particular goal.

In that example, the domain plans are based on a SPA-primary model,
assaming that the agent will naturally group together all the asset assignment decisions
related to a particular SPA. That organization of the problem is certainly a valid
approach, since the effectiveness of the various assets depends heavily on what other
assets are assigned (TAGOS vessels, for example, having a hard time telling friendly
submarines from enemy ones), and the final criterion for success in this problem is a
function of the independent probabilities of detection for each individual SPA.

However, there is an alternative organization that is asset-primary, where the
agent would group together the making of all decisions concerning assignments of a
single asset class, like TAGOS vessels. This organization, while perhaps less
compelling than the SPA-primary one, does have the advantage of highlighting the
connections between assignment decisions for a given set of assets as that set is
partitioned among the SPAs currently requiring attention. In this example, an agent
who had decided to allocate the TAGOS vessels as a first step in manually assigning
the assets to the SPAs might well follow a context query about the TAGOS assigned to
SPA I with a follow-on query about those assigned to SPA 2. But because that
problem organization is not the one reflected in the domain plans used by Pragma, the
system cannot easily discern the connection between those two moves. Pragma, using
its SPA-primary plan tree, has to switch between major SPA-labeled branches to find
the correct new context, and in doing so it looses its connection with the asset class
being queried about before, so that the search in the new, SPA 2 branch gives no
preference to TAGOS queries over queries for any other asset class.

This problem is similar to one noted by Carberry 1101 when using a plan
context model for resolving intersentential ellipsis. In her model, the query

Who is the teacher of CS200?

was attached by her plan tracking component to a plan for attending a particular section
of a course, one of the subactions for earning credit in a course. In the plan tree
structure, the instantiation of the course involved happened higher in the tree than the
elaboration of the action of attending a particular section that established the relevance
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of the query about the professor's identity. If the agent followed that query with an
elliptical

CS400?

SCarberry's system had the problem that the new plan branch built down from the new
instantiation of the course slot did not carry over any information about which attribute
of the former course had been queried due to considering which particular subactions.
That example also seems to be susceptible to this analysis of alternate organizational
schemes, since an attribute-primary rather than course-primary domain plan scheme
could easily have been built for plans to collect information about the professors
teaching all possible courses first, followed by data about which courses had free
space, their meeting time, and the like.

One answer to this problem would be to expand the domain plan library to
include plans modeling the alternate organization. In our current example, that would
mean an alternate set of subplans for assigning assets to SPAs organized by the class of
asset. The previous context node in our example would then also find a link in the
arrnnge-tagos-assignments branch, and the search for links to the ill-formed query
beginning from that context node would rank the exploration of TAGOS assignments
to other SPAs much more highly than exploring assignments of other assets to SPA 1.
However, the costs of such a multiple perspective approach implemented as parallel
plan trees comes not only in substantially increasing the size of the tree to be
maintained but also in complicating the representation of a single plan context with
substantial additional ambiguity, since at least until a pattern of queries established
which organizational approach the agent was adopting, context nodes would have to be
maintained in both branches. Tracking certainly could still proceed, as is currently
done when there are alternate initial contexts, by searching from each one and selecting
the one that finds the highest-scored link, since the agent's queries will fall more
closely together in the branch whose domain plan organization fits the approach that
the agent is following than in a branch whose organization is at cross purposes to the
agent's. Still, the multiplication of alternatives would make the practical development
of that sort of approach to multiple perspectives significantly more difficult than the
single perspective approach adapted in Pragma.

This concern with multiple perspectives is in fact a point where plan
modeling for natural language connects with deep issues in knowledge representation
concerning the simultaneous representation of the same domain under multiple
organizational principles and the ability to model shifts between those perspectives and
the influences of one perspective on the others. The natural but very difficult goal is to
find a representational scheme that carries the full richness of the alternate perspectives
in a more compact way than multiplying out the possibilities in parallel trees for each
alternative. Still, the overall point remains the importance of representing in the
context model as much as possible of the structure behind the agent's activities, both
the plan-building metaplan structure and the domain plan organization, since it is that
structure that is crucial to understanding and predicting the course of the agent's3 queries.
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9.5 System Design Lessons

Some of the other issues raised in the examples concern features in the
implementation of the metaplan model and heuristic component, pointing out the
strengths and weaknesses of particular elements of the approach.

9.5.1 Dependent Variable Instantiation from the Database

One implementation issue already noted concerns whether dependent
variables introduced as the plan tree is elaborated are instantiated immediately to the
values they have in the database or if they are left unbound. Since the damaged ship
domain examples were run in the first mode, and the SPA domain ones in the second,
these results provide a useful comparison between the two approaches.

By "dependent" variables, we mean plan variables not included in the
argument list of the plan but functionally dependent on variables that are arguments or
on other dependent variables. For example, a sail plan might take the ship as an
argument and include dependent variables for that ship's location and cruising speed.
The plan preconditions including assertions like (location-of ?ship ?ship-loc) would
then establish the values of those dependent variables, which might then in turn be
passed as arguments to subactions. In building the plan tree, such dependent variables
can either be treated extensionally and instantiated immediately to their actual database
values or they can be left unbound and treated as unknown values.

This question in regard to dependent variables is distinct from the situation
with open variables, variables introduced by plans that are not dependent even
indirectly on the argument values of the plan but are instead open to the agent's free
choice. Because there is no dependence, automatic instantiation to a particular value
from the database is not an option for these variables. In addition, part of the
advantage of the metaplan model is explicit modeling of the agent's instantiation
decisions for open variables, so their instantiation is under direct metaplan control.
Thus the modeling of the instantiation of open variables is quite different from the
question here about the treatment of dependent variables as the plan tree is being
expanded.

If dependent variables are instantiated, then the facts from the database can
be used in trimming the space of plans that need to be considered, since instantiation
will prevent the expansion of subplans whose preconditions are found to fail under
instantiation. For example the sail plan class is effectively partitioned into the two
plan subclasses sail-conventional and sail-nuclear. For any particular ship argument
to the sail plan, only one of those plan subclasses is appropriate, and when dependent
v0riables are instantiated, the effect will be that only one of those subplan branches will
actually be built.

This constraining effect of insta-Atiation is particularly powerful where a

*pick-at-random* metaplan has fired, since the plan preconditions can then restrict

the instantiation branches that will actually be built by filtering out from the full set of
variables of the same type as the open one those for which the plan preconditions fail.
For example, the sail-with-refueling plan contains an open variable for the oiler to be
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used for the refueling and preconditions ensuring that the oiler has enough fuel loaded
and can make a rendez-vous with the ship requiring it. If the agent asks an ill-formed
query where the wildcard could be the name of an oiler and where the rest of the query
is compatible with the preconditions of the sail- i th-refueling plan, the system could
build separate *pick-at-random* branches for each vessel in the oiler class. However,
if the system is running in a mode that instantiates dependent variables, only those
branches corresponding to oilers that actually have enough fuel and could make the3 rendez-vous would be built.

While constraining plan tree growth is the primary benefit, another advantage
of instantiation is found when a value that links to a dependent variable is lost in the
wildcarding. If the dependent vaitablc ir the plan tr..e io which it is linked has been
instantiated, then that instantiation can serve to suggest a possible filler for the ill-
formedness. The problem is, of course, that only if the agent knew the correct value
will the suggested correction correspond to her intention. For example, the wildcard CI
for C1 in Is the Fox CI? will find a link that suggests the intended meaning only if the
Fox is actually Cl, while otherwise the instantiated value from the database will be
suggested even though it is not what was intended.

However, there is a related problem that is even more serious. The major
disadvantage of the extensional instantiation approach is that the plan tree can then
only model plans that the system believes would succeed. This contradicts a basic
assumption about the expert advising setting, that the agent, while aware of the plans
for the domain, is not assumed to be aware of the facts, since determining them is the
purpose of the consultation. It would be a serious flaw in the model if it were unable to
model consideration by the agent of a plan that is blocked by a domain fact whose
value, for example, may have changed only recently. For example, if the agent thinks
that Pearl Harbor has the spare part that Sterett needs, she may ask about how long it
would take to fly it out from there. But if that part is not actually in stock, a system
that instantiated dependent variables could not even model the query. Clearly, the goal
must be for the system to be able to model consideration by the agent even of plana that
are actually infeasible. Yet a system running without any constraint from instantiation
will build very large plan trees. The need is thus for some way to combine the
constraints of instantiation with the representational adequacy of noninstantiation.

When this difficulty was first encountered with Pragma, one possible
solution that was explored was allowing the system to run in instantiated mode but
adding explicit modeling of incorrect assumptions on the agent's part using an
*incorrect-assumption* metaplan. In the example from the preceding paragraph, the

agent's query about how long it would take to fly the part from Pearl Harbor to the
Sterett could be matched if an *incorrect-assumption* metaplan was used to model
the agent's incorrect belief that the part was in stock in Pearl Harbor. This approach
has the advantage that all dependent variables in the tree are instantiated, either to their
correct database values or to ones justified by explicit *incorrect-assumption* nodes.
However, if incorrect assumptions are hypothesized for every dependent value, the
resulting plan tree will clearly be much larger even than a normal one where dependent
variables are left uninstantiated, since there are many possible incorrect assumptions
about each dependent value. Thus, this approach is only an advantage if the use of
incorrect assumptions can be limited somehow to cases suggested by the particular
query. That seemed to require a scheme for identifying the differences between the
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beliefs implied by the query and the instantiated context so as to predict that a link
would be possible given certain incorrect assumptions, but that turned out to be a
difficult problem.

A more hopeful path for combining the constraints of instantiation with
representational adequacy seems to lie in expanding the meta.plan model to include a
model of the agent's world knowledge. With an explicit representation for how much
the agent knows, the system would have the tools to predict which plans the agent
might believe to be feasible, even though the system knows them to be infeasible, and
to separate them from the plans that the agent can be assumed to recognize are
infeasible. The agent knowledge model is what then gives the necessary element of
control over using instantiation constraints. One direction toward using an agent
knowledge model to add some instantiation constraint on plan growth is embodied in
the heuristics proposed in Section 7.2.2 which use a model of agent knowledge to
influence the heuristic scores given to new nodes in tie plan tree. It seems that
including this portion of the model in the heuristic component would allow for a
nuanced treatment of degrees of agent knowledge, appropriate to the expert advising
situation, where there is no opportunity to build up a detailed model of the beliefs of
the particular agent. Thus the agent knowledge heuristics represent our current
approach to this question of making use of extensional database knowledge to
constrain tree growth.

9.5.2 Implications for Heuristic Search Control

Another lesson that suggests possible extensions to the system concerns
making use of the partial results of a search for link nodes to help control the progress
of the search itself. Currently, the heuristic search control rules depend on tree shape
and metaplan context and the contents of the partial interpretation, but they have no
way to take account of the progress of the search up to that point. Yet, in example S4,
we see that the search was stopped by the fixed heuristic cutoff before discovering any
link nodes, while in example Dl, the system continued to search for new links to reach
the cutoff of 50 even after 3 links ranked 80 had already been found.

The obvious alternative approach would be to implement a best-first search,
expecting the highest-ranked link node to be found first and then stopping. However,
because of the complexity of the heuristic rules, the search does not proceed
monotonically downward in scores. Discovery of an instantiation that matches a
constant in the partial interpretation, for example, substantially increases the ranking of
a node and thus of its children. Thus one cannot assume that the first link node found
would end up being the highest-ranked one if the search were continued. That is why
the heuristic system was first designed to run for a fixed score distance, ignoring the
partial results of the search. But these examples point out the importance of using the
results of the search so far as one relevant factor in controlling the search. The search
could then be driven beyond the normal cutoff in cases where no link has yet been
found, and perhaps cut off earlier in cases where many candidates already exist and it
is therefore unlikely (though not impossible) that higher-ranked ones will be found by
searching farther. Some mix of the two strategies for search control seems most
appropriate, where information about the results so far is used to moderate the fixed-
distance search.
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9.6 Summary

This chapter has presented a number of examples of the operation of
Pragma's plan tracking and ill-formedness resolution strategies from two different
domains, the damaged ship and SPA prosecution domains. The results of these
example runs were then analyzed to identify factors on various levels that determine
the applicability of this pragmatics-based ill-formedness approach for particular classes
of examples. The part of speech of the wildcard was seen to be one indication of the
semantic space opened up by the ill-formedness, and factors were also discussed
affecting the distribution of possible wildcard fillers in the metaplan tree and thus its
ability to provide further constraints. Certain of the examples were seen to raise a
theoretical question in the design of the model about capturing alternate perspectives
that points toward further work in the simultaneous modeling of multiple perspectives
over the same space of domain plans. The results also were analyzed for learnings
relating to the design of the metaplan tree and matching code, including the advantages
and disadvantages of instantiating dependent variables from the database.
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I CHAPTER 10

SCONCLUSIONS

10.1 Summary

This thesis has presented an approach to making use of pragmatic knowledge
for resolving ill-formed input. The class of examples considered was single-word alias
errors, selected because they are frequently difficult enough to require pragmatic
knowledge to correct or even identify, and yet are easily generated and analyzed.

Much of the research effort went into devising a representation strategy for
modeling pragmatic context in the chosen setting of expert advising discourse, where
an agent is refining and instantiating a plan to achieve a particular goal. A new plan
classification structure was derived that classifies domain plans on the basis of effects,
rather than actions, so that plan classes in the resulting hierarchy could stand for the
agent's partially-specified plans during the plan-building process. To represent the
agent's problem-solving actions, that is, the metalevel actions whose effects are to
specify the domain plan, a set of problem-solving metaplans was defined, capturing the
agent's possible plan-building and query-generating moves. A *build-plan* node in
the metaplan tree with a particular domain plan class as its argument, for example,
captures the agent's consideration of that class of possible solutions. The surrounding
nodes in the metaplan tree characterize the subplan exploration or variable instantiation
moves that the agent can use to further refine the plan, and the queries that may be used
to gain information relevant to those choices.

That metaplan model of the pragmatic context is applied to an ill-formed
query by first using wildcard parsing to derive from the query a set of possible parses
encoding the syntactic and semantic constraints from the rest of the sentence for each
possible word in the sentence being wildcarded. Each parse in the resulting set then
partially specifies a query, but includes logical wildcard elements. The metaplan
context tree, whose nodes predict queries related to the previous context, can then be
searched for nodes that can be linked to these partial interpretations, thus suggesting3 corrections for their wildcard elements.

That search must be heuristically controll,- ' with great care, both to limit the
area in the context tree that must be searched and to ensure as much as possible that the
suggested corrections most closely related to the previous context are identified first.
That control is achieved through a substantial collection of heuristic rules that make
use of different classes of knowledge to rank the nodes in the metaplan ,- -, with some
based on the shape and metaplan structure of the tree itself and others based on the
particular domain plans involved and on a model of the agent's world knowledge,
suggesting which plans the agent is more likely to consider and which queries are more3 likely to be asked. The heuristic rankings derived from the combination of these
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different classes of rules are used both to guide the search of the metaplan tree and to
rank -.he possible corrections found, when there are more than one.

The implementation of these techniques in the Pragma system was provided
with a library of domain plans in a naval domain and tested with example ill-formed
queries based on two different scenarios within that domain. In addition to providing a
demonstration of feasibility, the results of the tests also identified factors that affect
example difficulty and issues in system design and implementation. Some of the
examples from one of the scenarios were included as part of a demonstration of the
Janus NL system, loosely integrated with the rest of the Janus system so that the
corrected queries could be processed through to answers.

10.2 Implications of this A-pproach

Although this work was done in the context of a particular class of ill-
formedness and a particular discourse setting, there are implications that carry well
beyond those limted domains. This kind of model of pragmatic context ca-, have
broader usefulness within the expert advising setting, and similar models can be
worked out for other discourse settings to generalize the approach still further.

First, then, while the pragmatic model in Pragma is used only to suggest
corrections of alias errors, it is a general-purpose model of the task-derived pragmatics
for that particular discourse setting, and there are many other uses to which such
pragmatic knowledge can be fruitfully put. The handling of many classes of ill-
formedness that are not alias errors could also benefit from the use of pragmatic
context knowledge, though the style in which to apply that knowledge might vary.
Non-alias single-word errors like spelling errors represent a class of ill-formedness that
could be treated by the same wildcard parsing approach outlined here. On the other
hand, examples of scrambled word order would require alternate methods for bringing
the pragmatic knowledge to bear; wildcard parsing in that case would not be an
effective way to capture the partial information present in the ill-formed input to
prepare for matching against the space of predicted queries froia the pragmatic context.
Still, even these examples would require the same kind of heuristically-guided
prediction of the agent's likely next steps and queries. An effective model of
pragmatic context is not only useful in correcting ill-formedness, but would even allow
the identification of the ill-formedness in certain examples where nothing in the syntax
or semantics betrays the query as ill-formed, based on the absence of any connection
between the new query and the previous context.

There are also many possible applications for this kind of pragmatic model in
generating cooperative responses. While earlier work has pointed out the usefulness of
even a straightforward domain plan model in beiig able to make cooperative responses
to an agent's queries, the additional level of pragmatic structure captured in the
metaplans would allow that to be carried much further. For example, the ability to
interpret the agent's use of restrictions like frigate., within 500 miles of Sterett in terms
of their role in limiting the size of the set of possible values would allow the system to
respond more helpfully when a literal answer would not serve the purpose. Here, if no
ships meet the specified restriction, a cooperative response might expand the negative
answer with a list of a small number of the frigates closest to Sterett. As another

164



I
3 Report No. 7047 BBN Systems and Technologies Corporation

example, the evaluative comparison context created by ttacking a query about the fuel
levels for a set of possible ships might suggest that the expert also inform the agent
about their fuel consumption rates if those were different enough that the fuel level
comparison by itself would be misleading.

As is clear from its use in generating cooperative responses, the fundamental
usefulness of a model of pragmatic context comes in understanding the intended
meaning of the agent's queries. It is recognizing the role of the query in its context that
allows the system to respond cooperatively. In fact, the same sort of context is often
necessary for interpreting the meaning of the query itself. For example, queries about
ships within 500 miles in some contexts might refer to the distance as a ship could sail
it, avoiding land masses, while in other contexts it might refer to a helicopter's straight
line path. Thus even correct literal responses to well-formed queries require the ability
to interpret the query in its pragmatic context, the kind of connection that the metaplan
model makes possible.

This pragmatic modeling approach could also be extended to other discourse
settings by working out the appropriate metaplans to express the discourse structure of
those settings. Some work in this direction has already been done by Litman, as
pointed out in Section 6.2.3, who used metaplans to model discourse structures ike
interruptions and clarification subdialogues. Other settings like explanation and
argumentation could also be formalized in this way, so that their structure coutd be
modeled by metaplans. New issues raised in extending metaplan modeling tc such
domains would include the modeling of changes in world state based on partial
execution of discourse metaplans, since those settings, unlike expert advising, are not
isolated from such effects. In such settings also the questions surrounding alternative
metaplan formulations over the same region of domain plans would come up in a
somewhat different way than in the expert advising domain. In the expert advising
domain, because the final goal of either the normal *build-plan* or the *e~aluate-
plan* trees over a single area of domain plans is the selection of a single domain plan,
the alternate organizations can be closely connected so that the agent can move back
and forth freely. However, in an argument discourse setting, alternative metaplans like
*point-out-benefits* and *attack-positioni-of-opponent* may be more tightly
segregated.

Not only the basic metaplan modeling approach for pragmatic context, but
also the heuristics can be applied in other settings or even to other modeling
techniques. The heuristics based on a model of the agent's world knowledge, in

particular, provide useful controls on plan tree growth in any situation where domain
plans are being used to model an agent's possible actions.

This research has thus taken the basic ideas of modeling pragmatic context
using plans and metaplans and applied them in a given discourse setting to resolving '

particular class of ill-formedness, thus pushing them in new directions concerning the
kinds of models to use and the heuristics by which to control them, and developing
them further in ways that are broadly applicable to pragmatic modeling for NL
understanding.
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10.3 Areas for Further Work

Many areas in which this metaplan model and its heuristics could be
fruitfully carried further even within the expert advising and response to ill-formedness
settings have already been mentioned in the text. Some of the most significant are
discussed here.

First, on the level of the domain plans, it would be useful to relax' the
assumptions of the correc mess and completeness of the agent's knowledge of the plans
themselves by following Pollack [411 and representing plans in terms of their
constituent beliefs about the possibility of actions and about what their effects will be.
That would allow the system to recognize actions that come, for example, from
exploring flawed plans. If a student who has just found out that there is room in
CIS 659 then asks for a blank penmission-of-Linstructor form, the system should be able
to recognize that request (perhaps by analogy with another department tnat does use
such forms) as due to a flawed plan, and explain that that step is not necessary as part
of the current plan. This extension to recognize flawed plans would require additional
heuristic controls, ot course, since it is clearly irr- -;ble to explicitly include branches
for all possible flawed plans in the metaplan tree. ill, it is a serious drawback that the
current model cannot respond to any plan not included in its library especially for a
system trying to demonstrate robust understanding.

Another important extension on the domain plan level is extending the model
,.) be able to recognize the deductive consequences of facts rather than just the facts
themselves. For example, where the plan speaks of the class of the vessel being a fast
frigate, the agent might ask whether its hull number begins with "PF", or if it has
SPY-i radar, perhaps, as an indirect way of determining the class Like the previous
example, such uses of related assertions, ,ignificantly complicate the search for links to
the plan context, since successful matching in these cases requires that the system be
able to fig-ire out the intended indirect connection bietween the data requested and the
assertion that occurs in the plan. However, that connection may depend on private
knowledge of the agent, or at least may only be deducible. from shared knowiedge by a
compi . deduction process. This would seem to require, then, that the expert devote
considerable resources, as part of the search for a match, to inFerencing on the queried
asscriuons searching for such hidden connections between the actual assertions
requested and those that occur in the known plans. The depth of that search, on the
other hand, could in turn be limited by the knowledge that the agent is trying not only
to communicate her queries, but also wants the expert to be able to maintain an
accurate model of her domain planning state, and that secondary goal will Lsually
constrain the agent to ,upply whatever additional data is :equired for the expeit Lo be
able to make the correct connection and recognize the role of the new query in the
agent's plan-building process. Recogn::ing deductive coinsequences would also be
important in maintaining the agent world knowledge model, since the agent could also
be expected to recognize -, some limited depth cop lusions entailed by newly leamed
facts

TheT. are also in.portant directions Lor further research in regaid to the
metaplan level of the model. Most important, perhaps, would be to develop a more
conilete account of -he effects of altemate simultaneous metaplin organ:,zations
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across the same space of domain plans. In the approach given here, that overlap is
handled by using alternate branches in the metaplan tree which duplicate the domain
plan structure, but that does not allow for as e.sy movement back and forth between
related metaplans as seems to be found in actual dialogues. An agent who has used
*build-plan* queries to establish the feasibility of a particular branch will often then
ask evaluative queries about some subplan, and it does not make sense to have to build
a copy of the branch for that purpose. There should be a way to maintain the separate
implications for next moves of the ditferent metaplan classes without duplicating tree3 structure.

An interesting extension to the metaplans in this setting that should be fairly
straightforward would be to add a way to recognize queries where the agent asks not
about a domain fact that bears on a plan but about the plan itself or conclusions that
depend on the plan. For example, the query

Can the Fox replace the Sterett?

directly asks the expert for a conclusion about the feasibility of a particular subplan
based on the expert's knowledge of all the preconditions involved. A similar kind of
query in an *evaltate- plan* context might ask directly

Would replacing or repairing Sterett be faster?

a query that requires a synthesis of considerable data on the expert's part. These kinds
ef queries go beyond the explicitly database style of expert advising queries modeled in
the current effort toward a more general cooperative problem solving model.

It is also important to connect this style of metaplan context modeling with
the plan recognition work that tries to identify the agent's plan from observing her
actions. While this current effort proceeded under the simplifying assumptions that the
agent's top-level goal was already known to the system, it would clearly be better to
combine the two lines of investigation, so that plan recognition techniques could be
used to identify the context of an agent's queries within a metaplan model of the
possible plans and related queries. Such a facility would not only be important in
establishing the initial context in a dialogue where none was given, but also might
pro-ve useful as an alternate search strategy in the metaplan tree, where a query that
fc md no links in the immediate neighborhood of the previous context might more
easily be matched by applying plan recognition techniques than by expanding the tree3 further.

An important issue having to do with the model as a whole involves
capturing interactions between plans. The approach in this cuirent effort settled for
spreading out the planning space as a non-interacting tree of possibilities, but there are
actually cases both at the domain and metaplan levels where plans at different points in
the tree will interact with each other either constructively or destructively. On the
domain level, an agent may rea! ;ze that the same supply ship being used in one plan to
serve as a replacement can also be used on the way to transport a spare part, or that the
same oiler cannot deliver its one load of fuel to two different vessels in two different
location,. On the metaplan level, a single query metaplan may be able to establish a
fact that bears on multiple plans. It seems that these interactions need to be modeled in
some explicit forn, but it is not clear whether recursive metaplans or some other

167I



BBN Systems and Technologies Corporation Report No. 7047

scheme would be the best approach.

Concerning the heuristic component of this pragmatic model, one important
direction for further work is to expand the limited model of the agent's world
knowledge outlined here. This applies particularly in settings where there is extended
interaction allowing for the development of a richer model of aLent knowledge that can
take account not only of factual knowledge but also of knowledge of particular domain
plans and of habitual problem-solving patterns. Such patterns could be found both on
the domain plan level, where some agents might always try certain plans first, and also
on the metaplan level, since individual agents will also have patterns in terms of the
ways in which they explore the domain plan space and the sorts of queries they are
likely to ask.

Finally, extending the agent's world knowledge model could be made part of
a general effort to refine the metaplans so as to model problem-solving behavior with a
finer grain of detail. For example, the current metaplans directly model queries
beneath any *baild-plan* node about any of the preconditions of that plan. Control
based on the agent's world knowledge over the likelihood of that agent to ask each of
those queries is relegat!d now to the heuristic component. But a more detailed model
could explicitly capture that the purpose of the query is to learn the given information
in order to help to establish the feasibility of the domain plan, so that the agent's world
knowledge would then be factored in as explicit preconditions of the new, more
detailed metaplans. Much more could also be captured in such a model about the
different kinds of preconditions in the domain plans and which are more likely subjects
for queries. At the cost of complicating the model substantially, this expansion would
allow more precise prediction based not only on the world knowledge of the agent but
also on the nature of the precondition and its role in the domain plan being considered.

The general thrust of all these further efforts would be to expand and enrich
the pragmatic context modeling mechanism, since it is the knowledge of context and
techniques to apply it that will provide the power to handle many unsolved problems in
natural language uncerstanding.
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